首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2033篇
  免费   32篇
  国内免费   61篇
  2023年   11篇
  2022年   26篇
  2021年   35篇
  2020年   19篇
  2019年   20篇
  2018年   40篇
  2017年   27篇
  2016年   22篇
  2015年   72篇
  2014年   182篇
  2013年   221篇
  2012年   206篇
  2011年   236篇
  2010年   205篇
  2009年   41篇
  2008年   84篇
  2007年   51篇
  2006年   46篇
  2005年   54篇
  2004年   40篇
  2003年   31篇
  2002年   38篇
  2001年   19篇
  2000年   15篇
  1999年   27篇
  1998年   23篇
  1997年   13篇
  1996年   24篇
  1995年   23篇
  1994年   17篇
  1993年   21篇
  1992年   9篇
  1991年   9篇
  1990年   14篇
  1989年   12篇
  1988年   11篇
  1987年   12篇
  1986年   15篇
  1985年   19篇
  1984年   26篇
  1983年   26篇
  1982年   26篇
  1981年   10篇
  1980年   9篇
  1979年   11篇
  1978年   7篇
  1976年   3篇
  1974年   2篇
  1973年   7篇
  1972年   3篇
排序方式: 共有2126条查询结果,搜索用时 15 毫秒
931.
The N-end rule pathway is a proteolytic system in which destabilizing N-terminal amino acids of short lived proteins are recognized by recognition components (N-recognins) as an essential element of degrons, called N-degrons. In eukaryotes, the major way to generate N-degrons is through arginylation by ATE1 arginyl-tRNA-protein transferases, which transfer Arg from aminoacyl-tRNA to N-terminal Asp and Glu (and Cys as well in mammals). We have shown previously that ATE1-deficient mice die during embryogenesis with defects in cardiac and vascular development. Here, we characterized the arginylation-dependent N-end rule pathway in cardiomyocytes. Our results suggest that the cardiac and vascular defects in ATE1-deficient embryos are independent from each other and cell-autonomous. ATE1-deficient myocardium and cardiomyocytes therein, but not non-cardiomyocytes, showed reduced DNA synthesis and mitotic activity ~24 h before the onset of cardiac and vascular defects at embryonic day 12.5 associated with the impairment in the phospholipase C/PKC-MEK1-ERK axis of Gα(q)-mediated cardiac signaling pathways. Cardiac overexpression of Gα(q) rescued ATE1-deficient embryos from thin myocardium and ventricular septal defect but not from vascular defects, genetically dissecting vascular defects from cardiac defects. The misregulation in cardiovascular signaling can be attributed in part to the failure in hypoxia-sensitive degradation of RGS4, a GTPase-activating protein for Gα(q). This study is the first to characterize the N-end rule pathway in cardiomyocytes and reveals the role of its arginylation branch in Gα(q)-mediated signaling of cardiomyocytes in part through N-degron-based, oxygen-sensitive proteolysis of G-protein regulators.  相似文献   
932.
Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ligation in end-to-end cyclization. Key elements of an entropic chemical ligation consist of a chemoselective capture step merging the N and C termini as a covalently linked O/S-ester intermediate to permit the subsequent step of an intramolecular O/S-N acyl shift to form an amide. Many ligation methods exploit the supernucleophilicity of a thiol side chain at the N terminus for the capture reaction, which makes cysteine-rich peptides ideal candidates for the entropy-driven macrocyclization. Advances in desulfurization and modification of the thiol-containing amino acids at the ligation sites to other amino acids add extra dimensions to the entropy-driven ligation methods. This minireview describes recent advances of entropy-driven ligation to prepare circular proteins with or without a cysteinyl side chain.  相似文献   
933.
934.
The universally conserved His-66 of elongation factor Tu (EF-Tu) stacks on the side chain of the esterified Phe of Phe-tRNA(Phe). The affinities of eight aminoacyl-tRNAs were differentially destabilized by the introduction of the H66A mutation into Escherichia coli EF-Tu, whereas Ala-tRNA(Ala) and Gly-tRNA(Gly) were unaffected. The H66F and H66W proteins each show a different pattern of binding of 10 different aminoacyl-tRNAs, clearly showing that this position is critical in establishing the specificity of EF-Tu for different esterified amino acids. However, the H66A mutation does not greatly affect the ability of the ternary complex to bind ribosomes, hydrolyze GTP, or form dipeptide, suggesting that this residue does not directly participate in ribosomal decoding. Selective mutation of His-66 may improve the ability of certain unnatural amino acids to be incorporated by the ribosome.  相似文献   
935.
SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.  相似文献   
936.
937.
Post-translational modifications (PTMs) are required for proper folding of many proteins. The low capacity for PTMs hinders the production of heterologous proteins in the widely used prokaryotic systems of protein synthesis. Until now, a systematic and comprehensive study concerning the specific effects of individual PTMs on heterologous protein synthesis has not been presented. To address this issue, we expressed 1488 human proteins and their domains in a bacterial cell-free system, and we examined the correlation of the expression yields with the presence of multiple PTM sites bioinformatically predicted in these proteins. This approach revealed a number of previously unknown statistically significant correlations. Prediction of some PTMs, such as myristoylation, glycosylation, palmitoylation, and disulfide bond formation, was found to significantly worsen protein amenability to soluble expression. The presence of other PTMs, such as aspartyl hydroxylation, C-terminal amidation, and Tyr sulfation, did not correlate with the yield of heterologous protein expression. Surprisingly, the predicted presence of several PTMs, such as phosphorylation, ubiquitination, SUMOylation, and prenylation, was associated with the increased production of properly folded soluble proteins. The plausible rationales for the existence of the observed correlations are presented. Our findings suggest that identification of potential PTMs in polypeptide sequences can be of practical use for predicting expression success and optimizing heterologous protein synthesis. In sum, this study provides the most compelling evidence so far for the role of multiple PTMs in the stability and solubility of heterologously expressed recombinant proteins.  相似文献   
938.
939.
In mammalian cells, canonical histone H3 (H3.1) and H3 variant (H3.3) differ by five amino acids and are assembled, along with histone H4, into nucleosomes via distinct nucleosome assembly pathways. H3.1-H4 molecules are assembled by histone chaperone CAF-1 in a replication-coupled process, whereas H3.3-H4 are assembled via HIRA in a replication-independent pathway. Newly synthesized histone H4 is acetylated at lysine 5 and 12 (H4K5,12) by histone acetyltransferase 1 (HAT1). However, it remains unclear whether HAT1 and H4K5,12ac differentially regulate these two nucleosome assembly processes. Here, we show that HAT1 binds and acetylates H4 in H3.1-H4 molecules preferentially over H4 in H3.3-H4. Depletion of Hat1, the catalytic subunit of HAT1 complex, results in reduced H3.1 occupancy at H3.1-enriched genes and reduced association of Importin 4 with H3.1, but not H3.3. Finally, depletion of Hat1 or CAF-1p150 leads to changes in expression of a H3.1-enriched gene. These results indicate that HAT1 differentially impacts nucleosome assembly of H3.1-H4 and H3.3-H4.  相似文献   
940.
The most common cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation is ΔF508, and this causes cystic fibrosis (CF). New CF models in the pig and ferret have been generated that develop lung, pancreatic, liver, and intestinal pathologies that reflect disease in CF patients. Species-specific biology in the processing of CFTR has demonstrated that pig and mouse ΔF508-CFTR proteins are more effectively processed to the apical membrane of airway epithelia than human ΔF508-CFTR. The processing behavior of ferret WT- and ΔF508-CFTR proteins remains unknown, and such information is important to predicting the utility of a ΔF508-CFTR ferret. To this end, we sought to compare processing, membrane stability, and function of human and ferret WT- and ΔF508-CFTR proteins in a heterologous expression system using HT1080, HEK293T, BHK21, and Cos7 cells as well as human and ferret CF polarized airway epithelia. Analysis of the protein processing and stability by metabolic pulse-chase and surface On-Cell Western blots revealed that WT-fCFTR half-life and membrane stability were increased relative to WT-hCFTR. Furthermore, in BHK21, Cos7, and CuFi cells, human and ferret ΔF508-CFTR processing was negligible, whereas low levels of processing of ΔF508-fCFTR could be seen in HT1080 and HEK293T cells. Only the WT-fCFTR, but not ΔF508-fCFTR, produced functional cAMP-inducible chloride currents in both CF human and ferret airway epithelia. Further elucidation of the mechanism responsible for elevated fCFTR protein stability may lead to new therapeutic approaches to augment CFTR function. These findings also suggest that generation of a ferret CFTR(ΔF508/ΔF508) animal model may be useful.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号