首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2033篇
  免费   32篇
  国内免费   61篇
  2023年   11篇
  2022年   26篇
  2021年   35篇
  2020年   19篇
  2019年   20篇
  2018年   40篇
  2017年   27篇
  2016年   22篇
  2015年   72篇
  2014年   182篇
  2013年   221篇
  2012年   206篇
  2011年   236篇
  2010年   205篇
  2009年   41篇
  2008年   84篇
  2007年   51篇
  2006年   46篇
  2005年   54篇
  2004年   40篇
  2003年   31篇
  2002年   38篇
  2001年   19篇
  2000年   15篇
  1999年   27篇
  1998年   23篇
  1997年   13篇
  1996年   24篇
  1995年   23篇
  1994年   17篇
  1993年   21篇
  1992年   9篇
  1991年   9篇
  1990年   14篇
  1989年   12篇
  1988年   11篇
  1987年   12篇
  1986年   15篇
  1985年   19篇
  1984年   26篇
  1983年   26篇
  1982年   26篇
  1981年   10篇
  1980年   9篇
  1979年   11篇
  1978年   7篇
  1976年   3篇
  1974年   2篇
  1973年   7篇
  1972年   3篇
排序方式: 共有2126条查询结果,搜索用时 423 毫秒
141.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   
142.
TrmE is a 50 kDa guanine nucleotide-binding protein conserved between bacteria and man. It is involved in the modification of uridine bases (U34) at the first anticodon (wobble) position of tRNAs decoding two-family box triplets. The precise role of TrmE in the modification reaction is hitherto unknown. Here, we report the X-ray structure of TrmE from Thermotoga maritima. The structure reveals a three-domain protein comprising the N-terminal alpha/beta domain, the central helical domain and the G domain, responsible for GTP binding and hydrolysis. The N-terminal domain induces dimerization and is homologous to the tetrahydrofolate-binding domain of N,N-dimethylglycine oxidase. Biochemical and structural studies show that TrmE indeed binds formyl-tetrahydrofolate. A cysteine residue, necessary for modification of U34, is located close to the C1-group donor 5-formyl-tetrahydrofolate, suggesting a direct role of TrmE in the modification analogous to DNA modification enzymes. We propose a reaction mechanism whereby TrmE actively participates in the formylation reaction of uridine and regulates the ensuing hydrogenation reaction of a Schiff's base intermediate.  相似文献   
143.
In the final step of tRNA splicing, the 2'-phosphotransferase catalyzes the transfer of the extra 2'-phosphate from the precursor-ligated tRNA to NAD. We have determined the crystal structure of the 2'-phosphotransferase protein from Aeropyrum pernix K1 at 2.8 Angstroms resolution. The structure of the 2'-phosphotransferase contains two globular domains (N and C-domains), which form a cleft in the center. The N-domain has the winged helix motif, a subfamily of the helix-turn-helix family, which is shared by many DNA-binding proteins. The C-domain of the 2'-phosphotransferase superimposes well on the NAD-binding fold of bacterial (diphtheria) toxins, which catalyze the transfer of ADP ribose from NAD to target proteins, indicating that the mode of NAD binding by the 2'-phosphotransferase could be similar to that of the bacterial toxins. The conserved basic residues are assembled at the periphery of the cleft and could participate in the enzyme contact with the sugar-phosphate backbones of tRNA. The modes by which the two functional domains recognize the two different substrates are clarified by the present crystal structure of the 2'-phosphotransferase.  相似文献   
144.
In this study, we have used various tRNA(Tyr)Su3 precursor (pSu3) derivatives that are processed less efficiently by RNase P to investigate if the 5' leader is a target for RNase E. We present data that suggest that RNase E cleaves the 5' leader of pSu3 both in vivo and in vitro. The site of cleavage in the 5' leader corresponds to the cleavage site for a previously identified endonuclease activity referred to as RNase P2/O. Thus, our findings suggest that RNase P2/O and RNase E activities are of the same origin. These data are in keeping with the suggestion that the structure of the 5' leader influences tRNA expression by affecting tRNA processing and indicate the involvement of RNase E in the regulation of cellular tRNA levels.  相似文献   
145.
146.
About half of the mammalian genome is composed of retroposons. Long interspersed elements (LINEs) and short interspersed elements (SINEs) are the most abundant repetitive elements and account for about 21% and 13% of the human genome, respectively. SINEs have been detected in all major mammalian lineages, except for the South American order Xenarthra, also termed Edentata (armadillos, anteaters, and sloths). Investigating this order, we discovered a novel high-copy-number family of tRNA derived SINEs in the nine-banded armadillo Dasypus novemcinctus, a species that successfully crossed the Central American land bridge to North America in the Pliocene. A specific computer algorithm was developed, and we detected and extracted 687 specific SINEs from databases. Termed DAS-SINEs, we further divided them into six distinct subfamilies. We extracted tRNA(Ala)-derived monomers, two types of dimers, and three subfamilies of chimeric fusion products of a tRNA(Ala) domain and an approximately 180-nt sequence of thus far unidentified origin. Comparisons of secondary structures of the DAS-SINEs' tRNA domains suggest selective pressure to maintain a tRNA-like D-arm structure in the respective founder RNAs, as shown by compensatory mutations. By analysis of subfamily-specific genetic variability, comparison of the proportion of direct repeats, and analysis of self-integrations as well as key events of dimerization and deletions or insertions, we were able to delineate the evolutionary history of the DAS-SINE subfamilies.  相似文献   
147.
148.
We found a new variant of human growth hormone (hGH) from the recombinant hGH expression process in Saccharomyces cerevisiae. The variant was identified as N(alpha)-acetyl methionyl hGH which may be formed by N(alpha)-acetylation of met-hGH during the intracellular expression of hGH in S. cerevisiae. The variant was isolated from manufacturing process of LG Life Sciences' hGH product. The variant was subjected to trypsin digestion and RP-HPLC analysis, resulting in a delayed retention time and an increased mass (173 Da) of T1 tryptic peptide. The amino acid composition and amino acid sequence of the peptide showed the same result with T1 peptide of met-hGH except the N-terminal modification on methionine in the variant peptide. With collision induced dissociation (CID) experiments of the variant T1 tryptic peptide, we found the sequence and the a(1) fragment of N-terminal residue matched with those of acetyl-methionyl hGH. Within our production process, we produce the methionyl hGH first and then use the aminopeptidase to cut the N-terminal methionine. So the acetylation may inhibit the aminopeptidase to remove methionine and produces N(alpha)-acetyl methionyl hGH. And the biological activity of the variant was comparable to one of the unmodified hGH when tested by rat weight gain bioassay.  相似文献   
149.
Agafonov DE  Huang Y  Grote M  Sprinzl M 《FEBS letters》2005,579(10):2156-2160
An mRNA encoding the esterase from Alicyclobacillus acidocaldarius with catalytically essential serine codon (ACG) replaced by an amber (UAG) codon was used to study the suppression in in vitro translation system. Suppression of UAG by tRNA(Ser(CUA)) was monitored by determination of the full-length and active esterase. It was shown that commonly used increase of suppressor tRNA concentration inhibits protein production and therefore limits suppression. In situ deactivation of release factor by specific antibodies leads to efficient suppression already at low suppressor tRNA concentration and allows an in vitro synthesis of fully active enzyme in high yield undistinguishable from wild-type protein.  相似文献   
150.
The effect of replacement of tRNA(Phe) recognition elements on positioning of the 3'-terminal nucleotide in the complex with phenylalanyl-tRNA synthetase (PheRS) from T. thermophilus in the absence or presence of phenylalanine and/or ATP has been studied by photoaffinity labeling with s(4)U76-substituted analogs of wild type and mutant tRNA(Phe). The double mutation G34C/A35U shows the strongest disorientation in the absence of low-molecular-weight substrates and sharply decreases the protein labeling, which suggests an initiating role of the anticodon in generation of contacts responsible for the acceptor end positioning. Efficiency of photo-crosslinking with the alpha- and beta-subunits in the presence of individual substrates is more sensitive to nucleotide replacements in the anticodon (G34 by A or A36 by C) than to changes in the general structure of tRNA(Phe) (as a result of replacement of the tertiary pair G19-C56 by U19-G56 or of U20 by A). The degree of disorders in the 3'-terminal nucleotide positioning in the presence of both substrates correlates with decrease in the turnover number of aminoacylation due to corresponding mutations. The findings suggest that specific interactions of the enzyme with the anticodon mainly promote the establishment (controlled by phenylalanine) of contacts responsible for binding of the CCA-end and terminal nucleotide in the productive complex, and the general conformation of tRNA(Phe) determines, first of all, the acceptor stem positioning (controlled by ATP). The main recognition elements of tRNA(Phe), which optimize its initial binding with PheRS, are also involved in generation of the catalytically active complex providing functional conformation of the acceptor arm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号