首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2173篇
  免费   216篇
  国内免费   249篇
  2638篇
  2024年   5篇
  2023年   68篇
  2022年   80篇
  2021年   115篇
  2020年   60篇
  2019年   108篇
  2018年   96篇
  2017年   107篇
  2016年   78篇
  2015年   79篇
  2014年   114篇
  2013年   175篇
  2012年   76篇
  2011年   88篇
  2010年   63篇
  2009年   76篇
  2008年   90篇
  2007年   104篇
  2006年   93篇
  2005年   84篇
  2004年   69篇
  2003年   52篇
  2002年   68篇
  2001年   66篇
  2000年   66篇
  1999年   34篇
  1998年   33篇
  1997年   34篇
  1996年   34篇
  1995年   41篇
  1994年   34篇
  1993年   34篇
  1992年   36篇
  1991年   21篇
  1990年   26篇
  1989年   21篇
  1988年   23篇
  1987年   25篇
  1986年   19篇
  1985年   27篇
  1984年   29篇
  1983年   17篇
  1982年   20篇
  1981年   14篇
  1980年   6篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1975年   2篇
  1972年   2篇
排序方式: 共有2638条查询结果,搜索用时 12 毫秒
91.
Adeno-associated viral vectors (AAV) are efficient engineered tools for delivering genetic material into host cells. The commercialization of AAV-based drugs must be accompanied by the development of appropriate quality control (QC) assays. Given the potential risk of co-transfer of oncogenic or immunogenic sequences with therapeutic vectors, accurate methods to assess the level of residual DNA in AAV vector stocks are particularly important. An assay based on high-throughput sequencing (HTS) to identify and quantify DNA species in recombinant AAV batches is developed. Here, it is shown that PCR amplification of regions that have a local GC content >90% and include successive mononucleotide stretches, such as the CAG promoter, can introduce bias during DNA library preparation, leading to drops in sequencing coverage. To circumvent this problem, SSV-Seq 2.0, a PCR-free protocol for sequencing AAV vector genomes containing such sequences, is developed. The PCR-free protocol improves the evenness of the rAAV genome coverage and consequently leads to a more accurate relative quantification of residual DNA. HTS-based assays provide a more comprehensive assessment of DNA impurities and AAV vector genome integrity than conventional QC tests based on real-time PCR and are useful methods to improve the safety and efficacy of these viral vectors.  相似文献   
92.
AIMS: To investigate the biodegrading ability and cometabolism of synthetic pyrethroid (SP) utilizing bacteria in cultures with various minerals and carbon sources. METHODS AND RESULTS: Previously isolated SP-degrading Pseudomonas sp. and Serratia sp. were used in cultures containing either flumethrin SP or cypermethrin SP formulations. The culture media consisted of either (i) water only, (ii) water and sucrose, (iii) mineral broth or (iv) mineral broth and sucrose. The growth of both organisms was greatest in the mineral broth and sucrose medium, but the growth-limiting factor for Pseudomonas sp. strain Circle was the mineral content whereas for Serratia sp. strain White it was the carbon substrate. CONCLUSION: The greatest extent of degradation of both SP-based compounds occurred with Pseudomonas sp. strain Circle but was dependant on the medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This investigation could lead to the development of a relatively inexpensive medium supplement to enhance the microbial biodegradation of undesirable compounds, either in situ or ex situ. In this particular case, for the biodegradation of SPs used in sheep dip.  相似文献   
93.
Genome synthesis endows scientists the ability of de novo creating genomes absent in nature, by thorough redesigning DNA sequences and introducing numerous custom features. However, the genome synthesis is a labor‐ and time‐consuming work, and thus it is a challenge to verify and quantify the synthetic genome rapidly and precisely. Thus, specific DNA sequences different from native genomic sequences are designed into synthetic genomes during synthesis, namely genomic markers. Genomic markers can be easily detected by PCR reaction, whole‐genome sequencing (WGS) and a variety of methods to identify the synthetic genome from native one. Here, we review types and applications of genomic markers utilized in synthetic genomes, with the hope of providing a guidance for future works.  相似文献   
94.
Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell’s instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.  相似文献   
95.
96.
合成生物学的目标包括“通过合成来理解生命”以及用现代工程学方法设计合成复杂生物系统.其工程学目标的实现依赖于可集成、可调控、可重用、功能多样的蛋白质、RNA、DNA等基本分子元件.以分子机制为基础,合理设计与实验室进化相结合,改造和创建生物分子的相互作用特异性、调控方式、定量活性等,是实现生物系统人工调控与编程的重要策略,同时为自下而上设计合成日益复杂的人工生物系统奠定基础.  相似文献   
97.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
98.
哺乳动物细胞高效表达载体的优化   总被引:3,自引:0,他引:3  
目的:优化哺乳动物细胞表达系统,提高目的基因的表达效率。方法:以组织型纤溶酶原激活剂(tPA)为报告基因,利用本实验室建立的CHOfrt/dhfr-细胞定点整合表达系统,对多种表达调控元件(包括hCMV和hEF-1α启动子、hCMV增强子、hEF-1α1st内含子及翻译增强子H213和V163等)及其多种组合的表达效率进行了系统的比较和评价。结果:hCMV启动子与H213组合以及hEF-1α启动子与V163组合的表达效率分别是仅含hCMV启动子的156.6%和139.5%。结论:该研究为构建高效的哺乳动物细胞表达载体奠定了基础。  相似文献   
99.
The single gene for human macrophage colony-stimulating factor (M-CSF, or CSF-1) generates multiple mRNA species that diverge within the coding region. We have characterized translation products of these mRNA species from native and recombinant sources. Immunoblots of reduced native M-CSF indicate that multiple glycosylated species ranging from 25 kd to 200 kd are secreted by human monocytes and cell lines. In contrast, CV-1 cells expressing a short M-CSF clone secrete only 24 kd recombinant M-CSF. Synthetic peptide antibodies were developed to distinguish between secreted recombinant M-CSF from long and short mRNA splicing variants. Immunoblot analysis indicates that alternative mRNA splicing generates some M-CSF protein heterogeneity. Most secreted MIA PaCa-2 M-CSF reacts with long-clone-specific antibody. Lectin affinity chromatography shows that variable glycosylation contributes significantly to MIA PaCa-2 M-CSF size heterogeneity. In addition, cell lysates also contain larger M-CSF species that apparently undergo proteolytic processing before secretion. The data indicate that M-CSF protein heterogeneity results from both pre- and post-translational processing.  相似文献   
100.
Specific antisera were prepared to the inclusion body protein (gene VI product) and the gene I product of cauliflower mosaic virus (CaMV). Translational fusions between the lacZ gene and gene VI or gene I were constructed by cloning the relevant DNA fragments into the expression vectors pUR290, pUR291 or pUR292. Large amounts of fusion protein were synthesized when the inserted DNA fragment was in frame with the lacZ gene of the expression vector. These fusion proteins were used to raise specific antisera to gene VI and gene I proteins of CaMV. Antiserum to the gene VI product detected a range of proteins in crude extracts and in a subcellular fraction enriched for virus inclusion bodies. This range of proteins was further shown to be related to gene VI by Staphylococcus aureus V8 partial proteolysis. Antiserum to the gene I product detected viral specific proteins of 46, 42 and 38 K in preparations of CaMV replication complexes from infected plants but not in any other subcellular fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号