首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16044篇
  免费   812篇
  国内免费   1524篇
  2023年   243篇
  2022年   315篇
  2021年   424篇
  2020年   421篇
  2019年   474篇
  2018年   441篇
  2017年   401篇
  2016年   495篇
  2015年   494篇
  2014年   573篇
  2013年   1279篇
  2012年   451篇
  2011年   588篇
  2010年   479篇
  2009年   630篇
  2008年   618篇
  2007年   671篇
  2006年   656篇
  2005年   533篇
  2004年   559篇
  2003年   532篇
  2002年   492篇
  2001年   377篇
  2000年   338篇
  1999年   321篇
  1998年   306篇
  1997年   315篇
  1996年   283篇
  1995年   308篇
  1994年   337篇
  1993年   291篇
  1992年   275篇
  1991年   235篇
  1990年   216篇
  1989年   215篇
  1988年   199篇
  1987年   184篇
  1986年   154篇
  1985年   287篇
  1984年   348篇
  1983年   255篇
  1982年   333篇
  1981年   215篇
  1980年   200篇
  1979年   182篇
  1978年   106篇
  1977年   69篇
  1976年   89篇
  1974年   47篇
  1973年   45篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
31.
A simple fluorimetric assay for the determination of carbamoyl phosphate in tissue extracts is described. In the assay, production of ATP from carbamoyl phosphate and ADP by carbamate kinase is coupled to the formation of NADPH, using glucose, hexokinase, NADP+, and glucose-6-phosphate dehydrogenase. Production of NADPH in this system proved to be equal to the amount of carbamoyl phosphate present.  相似文献   
32.
In this paper, we describe an efficient procedure for the purification of yeast phosphofructokinase. This procedure eliminates any time delay and enables to obtain an enzyme with minimum proteolytic alterations. The molecular weights of the oligomeric enzyme and of its constitutive subunits were both evaluated by means of several independent methods. However, the accuracy of each measurement was not sufficient to discriminate between an hexameric and an octameric structure of the enzyme oligomer. On the other hand, crosslinking experiments demonstrated the octameric structure of yeast phosphofructokinase. Obviously, some methods of molecular weight determination have led to erroneous results. In particular, our experiments show that the reliability of molecular weight determinations performed by gel filtration of native proteins must be considered with caution.  相似文献   
33.
The ABO histo-blood group system is one of the most clinically important antigen families. As part of our overall goal to prepare the entire set of the A, B and H type I-VI antigens for a range of biochemical investigations, we report herein the synthesis of the type I and II antigens with a 7-octen-1-yl aglycone. This linker was chosen to facilitate not only the future conjugation of the antigens to a protein or solid support but also the synthesis of the H type I and II octyl glycosides for enzyme kinetic studies.  相似文献   
34.
DNA complexes with polypeptides (Lys-Ala-Ala)1)] and (Lys-Ala-Ala)34 have been studied using the methods of thermal melting and circular dichroism. Derivative melting curves of (Lys-Ala-Ala)10 DNA differed substantially from those of (Lys-Ala-Ala)34 prepared either by salt gradient dialysis or by direct mixing. Melting curves of the former complex were unimodal or bimodal with Tm increasing continuously withn input lysin-to-DNA phosphate ratio (r); those of the latter complex consisted of three separate transitions with Tm values almost independent of r. Complete reversibility of binding in the (Lys-Ala-Ala)10-DNA system but a slow redistribution of (Lys-Ala-Ala)34 on DNA at low temperature were found in the redistribution experiments Much faster redistribution from denatured to native DNA occurs at the temperature of melting, contributing to the unusual trimodal melting pattern. Circular dichroism curves are very similar for both complexes and indicate little change of DNA conformation upon polypeptide binding.  相似文献   
35.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
36.
《Process Biochemistry》2014,49(1):61-68
Cloning, over-expression, characterization and structural and functional analysis of two alkaline proteases from the newly isolated haloalkaliphilic bacteria: Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12 were carried out. The cloned protease genes were over-expressed in Escherichia coli within 6 h of the IPTG induction. The protease genes were sequenced and the sequence submitted to the GenBank with the accession numbers, HM219179 and HM219182. The recombinant proteases were active in the range of pH 8–11 and temperature 30–50 °C. The amino acid sequences of the alkaline proteases displayed hydrophobic character and stable configurations. The amino acids Asp 141, His 171 and Ser 324 formed the catalytic triad, while Ile, Leu and Ser were other amino acid moieties present in the active site. The characteristics of the recombinant proteases were compared and found to be similar to their native counterparts. On the basis of the in-silico analysis and inhibitor studies, the enzymes were confirmed as serine proteases. The study hold significance as only limited enzymes from the haloalkaliphilic bacteria have been cloned, sequenced and analyzed for the structure and function analysis.  相似文献   
37.
38.
TTUR 2-2, an alkalophilic Bacillus strain isolated from soil, grew well in media containing cholic acid (CA) at 5% or higher and efficiently converted 7α- and 12α-hydroxyl groups of CA to keto groups, with the conversion rate for both hydroxyl groups reaching 100% by 72 hours of cultivation. The strain also converted a 3α-hydroxyl group to a keto group, but the conversion rate was about 5% at 72 hours. The strain neither affected any other part of the CA molecule, nor oxidized 7β- or 12 β -hydroxyl groups.

By NTG mutagenesis, the following mutants were acquired; (1) converting only the 7α- and 12α-hydroxyl groups, (2) converting only the 12α-hydroxyl group, and (3) converting only the 7α-hydroxyl group. These mutants selectively produce 12-ketochenodeoxycholic acid (12KCDCA), 7-ketodeoxycholic acid (7KDOCA), and 7,12-diketolithocholic acid (7,12DKLCA), from CA; and 7-ketolithocholic acid (7KLCA) from cheno-deoxycholic acid (CDCA), respectively, at high yields, close to 100%.  相似文献   
39.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
40.
Axonal transport of peptidylglycine alpha-amidating monooxygenase (PAM) activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and reached a plateau between 48 and 72 h and then decreased. The flow rate was 100 mm/day, and the molecular mass of the active entity was 70 kDa, which was determined by gel filtration. In contrast, there was no evidence for significant retrograde axonal transport. Anterograde axonal transport of immunoreactive cholecystokinin, a carboxy-terminal-amidated putative neuropeptide, was also found. These results suggest that PAM is transported by a rapid axonal flow and may play a role as a processing enzyme during transport or in the terminals of rat sciatic nerves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号