全文获取类型
收费全文 | 1614篇 |
免费 | 290篇 |
国内免费 | 42篇 |
专业分类
1946篇 |
出版年
2024年 | 13篇 |
2023年 | 29篇 |
2022年 | 38篇 |
2021年 | 56篇 |
2020年 | 69篇 |
2019年 | 75篇 |
2018年 | 74篇 |
2017年 | 93篇 |
2016年 | 97篇 |
2015年 | 97篇 |
2014年 | 112篇 |
2013年 | 127篇 |
2012年 | 111篇 |
2011年 | 93篇 |
2010年 | 69篇 |
2009年 | 86篇 |
2008年 | 89篇 |
2007年 | 81篇 |
2006年 | 59篇 |
2005年 | 60篇 |
2004年 | 49篇 |
2003年 | 37篇 |
2002年 | 35篇 |
2001年 | 31篇 |
2000年 | 31篇 |
1999年 | 18篇 |
1998年 | 17篇 |
1997年 | 16篇 |
1996年 | 18篇 |
1995年 | 15篇 |
1994年 | 24篇 |
1993年 | 9篇 |
1992年 | 9篇 |
1991年 | 9篇 |
1990年 | 11篇 |
1989年 | 8篇 |
1988年 | 14篇 |
1987年 | 12篇 |
1986年 | 7篇 |
1985年 | 11篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1982年 | 7篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1979年 | 7篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有1946条查询结果,搜索用时 31 毫秒
101.
Chromosome arm‐specific patterns of polymorphism associated with chromosomal inversions in the major African malaria vector,Anopheles funestus 下载免费PDF全文
Chromosomal inversions facilitate local adaptation of beneficial mutations and modulate genetic polymorphism, but the extent of their effects within the genome is still insufficiently understood. The genome of Anopheles funestus, a malaria mosquito endemic to sub‐Saharan Africa, contains an impressive number of paracentric polymorphic inversions, which are unevenly distributed among chromosomes and provide an excellent framework for investigating the genomic impacts of chromosomal rearrangements. Here, we present results of a fine‐scale analysis of genetic variation within the genome of two weakly differentiated populations of Anopheles funestus inhabiting contrasting moisture conditions in Cameroon. Using population genomic analyses, we found that genetic divergence between the two populations is centred on regions of the genome corresponding to three inversions, which are characterized by high values of FST, absolute sequence divergence and fixed differences. Importantly, in contrast to the 2L chromosome arm, which is collinear, nucleotide diversity is significantly reduced along the entire length of three autosome arms bearing multiple overlapping chromosomal rearrangements. These findings support the idea that interactions between reduced recombination and natural selection within inversions contribute to sculpt nucleotide polymorphism across chromosomes in An. funestus. 相似文献
102.
R. Rubio de Casas P. Vargas E. Pérez-Corona E. Cano E. Manrique C. García-Verdugo & L. Balaguer 《Plant biology (Stuttgart, Germany)》2009,11(3):464-472
Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and β-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors. 相似文献
103.
Elizabeth A. Nyboer Lauren J. Chapman 《Biological journal of the Linnean Society. Linnean Society of London》2013,110(2):449-465
Habitat‐associated trait divergence may vary across ontogeny if there are strong size‐related shifts in selection pressures. We quantified patterns of phenotypic divergence in Nile perch (Lates niloticus) from ecologically distinct wetland edge and forest edge habitats in Lake Nabugabo, Uganda, and we compared patterns of divergence across three size classes to determine whether trends are consistent through Nile perch ontogeny. We predicted that inter‐habitat variation in biotic (e.g. vegetation structure) and abiotic (e.g. dissolved oxygen concentration) variables may create divergent selective regimes. We compared body morphology using geometric morphometrics and found substantial differences between habitats, although not all trends were consistent across size classes. The most striking aspects of divergence in small Nile perch were in mouth orientation, head size, and development of the caudal region. Medium‐sized Nile perch also showed differences in mouth orientation. Differences in large individuals were related to eye size and orientation, as well as caudal length. The observed patterns of divergence are consistent with functional morphological predictions for fish across divergent trophic regimes, high and low predation environments, and complex and simple habitats. Although this suggests adaptive divergence, the source of phenotypic variation is unknown and may reflect phenotypic plasticity and/or genetic differences. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 449–465. 相似文献
104.
Kai T. Lohbeck Ulf Riebesell Sinéad Collins Thorsten B. H. Reusch 《Evolution; international journal of organic evolution》2013,67(7):1892-1900
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments. 相似文献
105.
Léa Leuzinger Lionel Cavin Adriana López-Arbarello Jean-Paul Billon-Bruyat 《Palaeontology》2020,63(1):117-129
Tooth replacement in vertebrates is extremely diverse, and its study in extinct taxa gives insights into the evolution of the different dental renewal modes. Based on μ-CT scans of a left lower jaw of the extinct fish †Scheenstia (Actinopterygii, Lepisosteiformes), we describe in detail a peculiar tooth replacement mode that is, as far as we could ascertain from the literature, unique among vertebrates. The formation of the replacement teeth comprises a 180° rotation of their acrodin cap that occurs intraosseously within bony crypts, and their setting up appears to be synchronous. We propose a model for the dental renewal process and identify complementary anatomical features visible in the tomography such as the junction between the different tooth-bearing bones (prearticular–coronoid and dentary), as well as cavities corresponding to intraosseous crypts, nervous and/or vascular canals. The location of the cavities and their subsequent identification (e.g. Meckel's cavity, mandibular sensory canal) help us to identify the function of pores visible on the bone surface and understand their relation to internal anatomical features. Finally, recognition of this tooth replacement mode raises the question of whether it is specific to †Scheenstia or related to a particular dentition type and thus potentially occurs in other lineages. 相似文献
106.
淀粉作为主要的碳水化合物在储藏能量方面发挥至关重要的作用。颗粒结合型淀粉合酶(GBSS)与直链淀粉的合成息息相关。尽管该酶的编码基因已在许多栽培植物中被分离和确定, 但有关它们在作物野生近缘种中的序列分歧和表达的研究却相对较少。该研究以药用野生稻(Oryza officinalis)为研究对象, 定性和定量地分析了GBSS编码基因的序列特点、与其它植物同源基因的进化关系以及在叶和种子中的表达情况。系统发育分析表明, 该酶在禾本科植物中分别由GBSSI和GBSSII基因编码。在药用野生稻中, 这2种基因所编码蛋白的氨基酸序列一致性为62%, 并且它们在不同器官内呈现时空分化表达, 其中GBSSI在种子中超强表达, GBSSII则主要在叶片表达。 相似文献
107.
Multiple origins of Hawaiian drosophilids: Phylogeography of Scaptomyza Hardy (Diptera: Drosophilidae) 下载免费PDF全文
Toru Katoh Hiroyuki F. Izumitani Shinji Yamashita Masayoshi Watada 《Entomological Science》2017,20(1):33-44
Scaptomyza is a highly diversified genus in the family Drosophilidae, having undergone an explosive radiation, along with the Hawaiian‐endemic genus Idiomyia in the Hawaiian Islands: about 60% of 269 Scaptomyza species so far described are endemic to the Hawaiian Islands. Two hypotheses have been proposed for the origin and diversification of Hawaiian drosophilids. One is the “single Hawaiian origin” hypothesis: Scaptomyza and Idiomyia diverged from a single common ancestor that had once colonized the Hawaiian Islands, and then non‐Hawaiian Scaptomyza migrated back to continents. The other is the “multiple origins” hypothesis: Hawaiian Scaptomyza and Idiomyia derived from different ancestors that independently colonized the Hawaiian Islands. A key issue for testing these two hypotheses is to clarify the phylogenetic relationships between Hawaiian and non‐Hawaiian species in Scaptomyza. Toward this goal, we sampled additional non‐Hawaiian Scaptomyza species, particularly in the Old World, and determined the nucleotide sequences of four mitochondrial and seven nuclear genes for these species. Combining these sequence data with published data for 79 species, we reconstructed the phylogeny and estimated ancestral distributions and divergence times. In the resulting phylogenetic trees, non‐Hawaiian Scaptomyza species were interspersed in two Hawaiian clades. From a reconstruction of ancestral biogeography, we inferred that Idiomyia and Scaptomyza diverged outside the Hawaiian Islands and then independently colonized the Hawaiian Islands, twice in Scaptomyza, thus supporting the “multiple origins” hypothesis. 相似文献
108.
Sara Marin Anaïs Gibert Juliette Archambeau Vincent Bonhomme Mylne Lascoste Benoit Pujol 《Molecular ecology》2020,29(16):3010-3021
Phenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST) and quantitative genetic (QST) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomass‐related traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies. 相似文献
109.
Lucas Torres Eric Pante Jacob GonzlezSolís Amlia Viricel Ccile Ribout Francis Zino Will MacKin Carine Precheur Julie Tourmetz Licia Calabrese Teresa Milito Laura Zango Hadoram Shirihai Vincent Bretagnolle 《Ecology and evolution》2021,11(21):14960
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life‐history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping‐stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures. 相似文献
110.
Kaeuffer R Peichel CL Bolnick DI Hendry AP 《Evolution; international journal of organic evolution》2012,66(2):402-418
Parallel (or convergent) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some nonparallel evolution is present. It is therefore important to explicitly quantify the parallel and nonparallel aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in six independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was parallel across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that parallel evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respects to the dichotomous habitat classifications frequently used in such studies. 相似文献