首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  国内免费   3篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   8篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
61.
细胞凋亡检测方法新进展   总被引:1,自引:0,他引:1  
细胞凋亡是生命科学研究的热点之一,检测细胞凋亡的方法层出不穷。目前,用于体外细胞凋亡检测的方法已相对成熟,比如:流式细胞术、TUNEL检测法、DNA片断检测等。而用于体内细胞凋亡检测的试剂则正在研究之中,各种检测试剂不断出现。其中,Annexin V、Synap-totagmin I-C2A、ApoSense家族分子与其他检测试剂相比具有一定的优势。该文在介绍几种常用的体外细胞凋亡检测方法的同时,重点介绍上述三种试剂。  相似文献   
62.
Abstract

Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed.  相似文献   
63.
The expression of the synaptic vesicle protein, synaptotagmin, in developing rat superior cervical ganglia is influenced by transsynaptic factors associated with membrane depolarization. The present study examines the role of cyclic AMP in the regulation of synaptotagmin in neonatal superior cervical ganglia maintained in explant culture. Ganglia were treated for 48 h in vitro with the Na+‐channel ionophore, veratridine, or with pharmacological agents that alter cyclic AMP levels. Levels of cyclic AMP and synaptotagmin were determined by radioimmunoassay. Veratridine treatment significantly increased cyclic AMP in cultured ganglia, with a long time course, and also increased synaptotagmin levels. Drugs that elevate cyclic AMP levels significantly increased synaptotagmin levels, with similar magnitude to that produced by veratridine treatment. These pharmacological agents did not alter neuron survival or total ganglionic protein content. No additive effects were observed after combined treatment with veratridine and pharmacological agents that increased cyclic AMP. Agents that blocked adenylyl cyclase blocked the veratridine‐induced increase in synaptotagmin levels. The results suggest that regulation of expression of synaptotagmin in neonatal sympathetic neurons is mediated partially by cyclic AMP. © 2001 John Wiley & Sons, Inc. J Neurobiol 46: 281–288, 2001  相似文献   
64.
65.
The rate at which a membrane protein is internalized from the plasma membrane can be regulated by revealing a latent internalization signal in response to an appropriate stimulus. Internalization of the synaptic vesicle membrane protein, synaptotagmin 1, is controlled by two distinct regions of its intracytoplasmic C2B domain, an internalization signal present in the 29 carboxyterminal (CT) amino acids and a separate regulatory region. We have now characterized the internalization motif by mutagenesis and found that it involves an essential tryptophan in the last beta strand of the C2B domain, a region that is distinct from the AP2-binding site previously described. Internalization through the tryptophan-based motif is sensitive to eps15 and dynamin mutants and is therefore likely to be clathrin mediated. A tryptophan-to-phenylalanine mutation had no effect on internalization of the CT domain alone, but completely inhibited endocytosis of the folded C2B domain. This result suggests that recognition of sorting motifs can be influenced by their structural context. We conclude that endocytosis of synaptotagmin 1 requires a novel type of internalization signal that is subject to regulation by the rest of the C2B domain.  相似文献   
66.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   
67.
We identify and characterize two classes of immediate-early genes: (i) genes, induced by depolarization in neurons, that play a role in depolarization-induced neuronal plasticity and (ii) genes, induced in neuronal precursors by neurotrophins, that play a causal role in neurotrophin-directed neuronal differentiation. We use rat PC12 pheochromocytoma cells to identify (i) genes preferentially induced by [depolarization or forskolin] versus [Nerve Growth Factor (NGF) or Epidermal Growth Factor (EGF)] and (ii) genes preferentially induced by NGF versus EGF. We describe (i) a collection of genes preferentially induced by depolarization/forskolin in PC12 cells and by kainic acid in vivo, and (ii) a collection of genes preferentially induced by NGF. The synaptotagmin IV gene encodes a synaptic vesicle protein whose level is modulated by depolarization. NGF preferentially induces the urokinase-plasminogen activator receptor in PC12 cells. Antisense oligonucleotide and anti-UPAR antibody experiments demonstrate that NGF-induced UPAR expression is required for NGF-driven PC12 cell differentiation.  相似文献   
68.
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin‐11 (Syt11), a non‐Ca2+‐binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin‐mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin‐coated pits and bulk endocytosis‐like structures increase on the plasma membrane in Syt11‐knockdown neurons. Structural–functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.  相似文献   
69.
70.
The extended synaptotagmins (E‐Syts) are endoplasmic reticulum (ER) proteins that bind the plasma membrane (PM) via C2 domains and transport lipids between them via SMP domains. E‐Syt1 tethers and transports lipids in a Ca2+‐dependent manner, but the role of Ca2+ in this regulation is unclear. Of the five C2 domains of E‐Syt1, only C2A and C2C contain Ca2+‐binding sites. Using liposome‐based assays, we show that Ca2+ binding to C2C promotes E‐Syt1‐mediated membrane tethering by releasing an inhibition that prevents C2E from interacting with PI(4,5)P2‐rich membranes, as previously suggested by studies in semi‐permeabilized cells. Importantly, Ca2+ binding to C2A enables lipid transport by releasing a charge‐based autoinhibitory interaction between this domain and the SMP domain. Supporting these results, E‐Syt1 constructs defective in Ca2+ binding in either C2A or C2C failed to rescue two defects in PM lipid homeostasis observed in E‐Syts KO cells, delayed diacylglycerol clearance from the PM and impaired Ca2+‐triggered phosphatidylserine scrambling. Thus, a main effect of Ca2+ on E‐Syt1 is to reverse an autoinhibited state and to couple membrane tethering with lipid transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号