首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  国内免费   3篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   8篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
排序方式: 共有77条查询结果,搜索用时 460 毫秒
21.
SNAREs (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptors) are ubiquitous proteins that direct vesicular trafficking and exocytosis. In neurons, SNAREs act to mediate release of neurotransmitters, which is a carefully regulated process. Calcium influx has long been shown to be the key trigger of release. However, calcium alone cannot regulate the degree of vesicle content release. For example, only a limited number of docked vesicles releases neurotransmitters when calcium entry occurs; this suggests that exocytosis is regulated by other factors besides calcium influx. Regulation of the degree of release is best explained by looking at the many enzymatic proteins that interact with the SNARE complex. These proteins have been hypothesized to regulate the formation, stability, or disassembly of the SNARE complex and therefore may regulate neurotransmitter release. One group of enzymatic regulators is the protein kinases. These proteins phosphorylate sites on both SNARE proteins and proteins that interact with SNARE proteins. Recent research has identified some of the specific effects that phosphorylation (or dephosphorylation) at these sites can produce. Additionally, palmitoylation of SNAP-25, regulates the localization, and hence activity of this key SNARE protein. This review focuses on the location and effects of phosphorylation on SNARE regulation.  相似文献   
22.
Several members of the synaptotagmin (syt) family of vesicle proteins have been proposed to act as Ca2+ sensors on synaptic vesicles. The mechanism by which calcium activates this class of proteins has been the subject of controversy, yet relatively few detailed biophysical studies have been reported on how isoforms other than syt I respond to divalent metal ions. Here, we report a series of studies on the response of syt II to a wide range of metal ions. Analytical ultracentrifugation studies demonstrate that Ca2+ induces protein dimerization upon exposure to 5 mM Ca2+. Whereas Ba2+, Mg2+, or Sr2+ do not potentiate self-association as strongly as Ca2+, Pb2+ triggers self-association of syt II at concentrations as low as 10 microM. Partial proteolysis studies suggest that the various divalent metals cause different changes in the conformation of the protein. The high calcium concentrations required for self-association of syt II suggest that the oligomerized state of this protein is not a critical intermediate in vesicle fusion; however, low-affinity calcium sites on syt II may play a critical role in buffering calcium at the presynaptic active zone. In addition, the high propensity of lead to oligomerize syt II offers a possible molecular explanation for how lead interferes with calcium-evoked neurotransmitter release.  相似文献   
23.
The synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+-syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown. Here, we have used recombinant C2 domains derived from the cytoplasmic domains of syts I-XI to interfere with endogenous syt-effector interactions during Ca2+-triggered exocytosis from cracked PC12 cells. Inhibition was closely correlated with syntaxin-SNAP-25 and phosphatidylinositol 4,5-bisphosphate (PIP2)-binding activity. Moreover, we measured the expression levels of endogenous syts in PC12 cells; the major isoforms are I and IX, with trace levels of VII. As expected, if syts I and IX function as Ca2+ sensors, fragments from these isoforms blocked secretion. These data suggest that syts trigger fusion via their Ca2+-regulated interactions with t-SNAREs and PIP2, target molecules known to play critical roles in exocytosis.  相似文献   
24.
Cortical granule exocytosis is important for the block to polyspermy at fertilization in the eggs of most vertebrates and many invertebrates. Cortical granules are poised at the cell surface and exocytose in response to sperm stimulation. Following exocytosis, the cortical granule contents modify the extracellular environment of the egg, the major result of which is to block additional sperm binding. Here we show that proteins homologous to members of the SNARE hypothesis—a molecular model designed to explain the trafficking, docking, and exocytosis of vesicles in the secretory compartment—are present in eggs at the right time and place to be involved in the regulation of cortical granule exocytosis. Using polymerase chain reaction (PCR) screens we have found homologues of synaptobrevin/VAMP, syntaxin, synaptotagmin, and rab3. Antibodies generated to fusion proteins or to synthetic peptides encoded by the cloned cDNAs were used in an immunofluorescence assay to show that each of the cognate proteins are present in the cortex of the egg. A synaptobrevin/VAMP homologue appears to be specifically associated with the membrane of cortical granules before fertilization and, following cortical granule exocytosis, is incorporated into the plasma membrane of the zygote. A rab3 homologue is also associated with cortical granules specifically but, following fertilization, the protein reassociates with different, yet undefined, vesicles throughout the cytoplasm of the zygote. Homologues of synaptotagmin and syntaxin are also present at the egg cortex but, in contrast to rab3 and VAMP, appear to be associated with the plasma membrane. Following fertilization, syntaxin and tagmin remain associated with the plasma membrane and are more readily immunolabeled, presumably due to an increased accessibility of the antibodies to the target protein domains. We also show by immunoblotting experiments that the cognate proteins are of the sizes predicted for these homologues. These results suggest that at least some steps in the biology of cortical granules may be mediated by SNARE homologues, and this finding, along with the unique biology of cortical granules, should facilitate examination of specific events of the fertilization reaction and the mechanism of stimulus-dependent exocytosis. Mol. Reprod. Dev. 48:106–118, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
25.
In this study, we investigated the effects of exposure to an extremely low frequency magnetic field (ELFMF) on hormone secretion from an islet derived insulinoma cell line, RIN-m. We stimulated RIN-m cells to secrete insulin under exposure to an ELFMF, using our established system for the exposure of cultured cells to an ELFMF at 5 mT and 60 Hz, or under sham exposure conditions for 1 h and observed the effects. In the presence of a depolarizing concentration of potassium (45 mM KCl), exposure to ELFMF significantly attenuated insulin release from RIN-m cells, compared to sham exposed cells. Treatment with nifedipine reduced the difference in insulin secretion between cells exposed to an ELFMF and sham exposed cells. The expression of mRNA encoding synaptosomal associated protein of 25 kDa (SNAP-25) and synaptotagmin 1, which play a role in exocytosis in hormone secretion and influx of calcium ions, decreased with exposure to an ELFMF in the presence of 45 mM KCl. These results suggest that exposure to ELFMF attenuates insulin secretion from RIN-m cells by affecting calcium influx through calcium channels.  相似文献   
26.
Molecular structures of proteins involved in vesicle fusion   总被引:3,自引:0,他引:3  
We present a summary of the structures of 13 proteins involved in the docking and fusion of intracellular transport vesicles to their target membranes.  相似文献   
27.
Synaptotagmin (Syt) family members consist of six separate domains: a short amino terminus, a single transmembrane domain, a spacer domain, a C2A domain, a C2B domain and a short carboxyl (C) terminus. Despite sharing the same domain structures, several synaptotagmin isoforms show distinct subcellular localization. Syt IV is mainly localized at the Golgi, while Syt I, a possible Ca(2+)-sensor for secretory vesicles, is localized at dense-core vesicles and synaptic-like microvesicles in PC12 cells. In this study, we sought to identify the region responsible for the Golgi localization of Syt IV by immunocytochemical and biochemical analyses as a means of defining the distinct subcellular localization of the synaptotagmin family. We found that the unique C-terminus of the spacer domain (amino acid residues 73-144) between the transmembrane domain and the C2A domain is essential for the Golgi localization of Syt IV. In addition, the short C-terminus is probably involved in proper folding of the protein, especially the C2B domain. Without the C-terminus, Syt IVdeltaC proteins are not targeted to the Golgi and seem to colocalize with an endoplasmic reticulum (ER) marker (i.e. induce crystalloid ER-like structures). On the basis of these results, we propose that the divergent spacer domain among synaptotagmin isoforms may contain certain signals that determine the final destination of each isoform.  相似文献   
28.
Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE complexes, and rapidly inhibit exocytosis. The tandem C2 domains of synaptotagmin cooperate via a novel mechanism in which the disruptive effects of Ca2+ ligand mutations in one C2 domain can be partially alleviated by the presence of an adjacent C2 domain. Complete disruption of Ca2+-triggered membrane and target membrane SNARE interactions required simultaneous neutralization of Ca2+ ligands in both C2 domains of the protein. We conclude that synaptotagmin-SNARE interactions regulate membrane fusion and that cooperation between synaptotagmin's C2 domains is crucial to its function.  相似文献   
29.
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin‐like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13‐4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A‐mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways .  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号