首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  国内免费   3篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   8篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
11.
Complexins are synaptic SNARE complex‐binding proteins that cooperate with synaptotagmins in activating Ca2+‐stimulated, synaptotagmin‐dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin‐independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non‐metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca2+‐triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.  相似文献   
12.
The WNK kinases are a recently discovered family of serine-threonine kinases that have been shown to play an essential role in the regulation of electrolyte homeostasis, lntronic deletions in the WNK1 gene resuk in its overexpression and lead to pseudohypoaldosteronism type Ⅱ, a disease with salt-sensitive hypertension and hyperkalemia. This review focuses on the recent evidence elucidating the structure of the kinase domain of WNK1 and functions of these kinases in normal and disease physiology. Their functions have implications for understanding the biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. The WNK kinases may be able to influence ion homeostasis through its effects on synaptotagmin function.  相似文献   
13.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.  相似文献   
14.
The Ca2+-independent membrane interactions of the soluble C2 domains from synaptotagmin 1 (syt1) were characterized using a combination of site-directed spin labeling and vesicle sedimentation. The second C2 domain of syt1, C2B, binds to membranes containing phosphatidylserine and phosphatidylcholine in a Ca2+-independent manner with a lipid partition coefficient of approximately 3.0 × 102 M− 1. A soluble fragment containing the first and second C2 domains of syt1, C2A and C2B, has a similar affinity, but C2A alone has no detectable affinity to phosphatidylcholine/phosphatidylserine bilayers in the absence of Ca2+. Although the Ca2+-independent membrane affinity of C2B is modest, it indicates that this domain will never be free in solution within the cell. Site-directed spin labeling was used to obtain bilayer depth restraints, and a simulated annealing routine was used to generate a model for the membrane docking of C2B in the absence of Ca2+. In this model, the polybasic strand of C2B forms the membrane binding surface for the domain; however, this face of C2B does not penetrate the bilayer but is localized within the aqueous double layer when C2B is bound. This double-layer location indicates that C2B interacts in a purely electrostatic manner with the bilayer interface. In the presence of Ca2+, the membrane affinity of C2B is increased approximately 20-fold, and the domain rotates so that the Ca2+-binding loops of C2B insert into the bilayer. This Ca2+-triggered conformational change may act as a switch to modulate the accessibility of the polybasic face of C2B and control interactions of syt1 with other components of the fusion machinery.  相似文献   
15.
Exocytosis of neurotransmitter containing vesicles supports neuronal communication. The importance of molecular interactions involving specific lipids has become progressively more evident and the lipid composition of both the synaptic vesicle and the pre-synaptic plasma membrane at the active zone has significant functional consequences for neurotransmitter release. Several classes of lipids have been implicated in exocytosis including polyunsaturated fatty acids and phosphoinositides. This minireview will focus on recent developments regarding the role of phosphoinositides in neurosecretion.  相似文献   
16.
Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.  相似文献   
17.
18.
Central synapses operate neurotransmission in several modes: synchronous/fast neurotransmission (neurotransmitters release is tightly coupled to action potentials and fast), asynchronous neurotransmission (neurotransmitter release is slower and longer lasting), and spontaneous neurotransmission (where small amounts of neurotransmitter are released without being evoked by an action potential). A substantial body of evidence from the past two decades suggests that seemingly identical synaptic vesicles possess distinct propensities to fuse, thus selectively serving different modes of neurotransmission. In efforts to better understand the mechanism(s) underlying the different modes of synaptic transmission, many research groups found that synaptic vesicles used in different modes of neurotransmission differ by a number of synaptic proteins. Synchronous transmission with higher temporal fidelity to stimulation seems to require synaptotagmin 1 and complexin for its Ca2+ sensitivity, RIM proteins for closer location of synaptic vesicles (SV) to the voltage operated calcium channels (VGCC), and dynamin for SV retrieval. Asynchronous release does not seem to require functional synaptotagmin 1 as a calcium sensor or complexins, but the activity of dynamin is indispensible for its maintenance. On the other hand, the control of spontaneous neurotransmission remains less clear as deleting a number of essential synaptic proteins does not abolish this type of synaptic vesicle fusion. VGCC distance from the SV seems to have little control on spontaneous transmission, while there is an involvement of functional synaptic proteins including synaptotagmins and complexin. Recently, presynaptic deficits have been proposed to contribute to a number of pathological conditions including cognitive and mental disorders. In this review, we evaluate recent advances in understanding the regulatory mechanisms of synaptic vesicle dynamics and in understanding how different molecular substrates maintain selective modes of neurotransmission. We also highlight the implications of these studies in understanding pathological conditions.  相似文献   
19.
Synaptotagmin 1 (syt1) is a synaptic vesicle membrane protein that functions as the Ca2+ sensor in neuronal exocytosis. Here, site-directed spin labeling was used to generate models for the solution and membrane-bound structures of a soluble fragment of syt1 containing its two C2 domains, C2A and C2B. In solution, distance restraints between the two C2 domains of syt1 were measured using double electron-electron resonance and used in a simulated annealing routine to generate models for the structure of the tandem C2A-C2B fragment. The data indicate that the two C2 domains are flexibly linked and do not interact with each other in solution, with or without Ca2+. However, the favored orientation is one where the Ca2+-binding loops are oriented in opposite directions. A similar approach was taken for membrane-associated C2A-C2B, combining both distances and bilayer depth restraints with simulated annealing. The restraints can only be satisfied if the Ca2+ and membrane-binding surfaces of the domains are oriented in opposite directions so that C2A and C2B are docked to opposing bilayers. The result suggests that syt1 functions to bridge across the vesicle and plasma membrane surfaces in a Ca2+-dependent manner.  相似文献   
20.
Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-Å X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号