首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1138篇
  免费   68篇
  国内免费   233篇
  2024年   5篇
  2023年   17篇
  2022年   15篇
  2021年   29篇
  2020年   38篇
  2019年   61篇
  2018年   30篇
  2017年   43篇
  2016年   24篇
  2015年   24篇
  2014年   25篇
  2013年   75篇
  2012年   27篇
  2011年   40篇
  2010年   52篇
  2009年   53篇
  2008年   61篇
  2007年   57篇
  2006年   47篇
  2005年   35篇
  2004年   53篇
  2003年   48篇
  2002年   56篇
  2001年   51篇
  2000年   49篇
  1999年   51篇
  1998年   41篇
  1997年   25篇
  1996年   24篇
  1995年   19篇
  1994年   22篇
  1993年   17篇
  1992年   13篇
  1991年   20篇
  1990年   24篇
  1989年   12篇
  1988年   27篇
  1987年   30篇
  1986年   12篇
  1985年   7篇
  1984年   15篇
  1983年   11篇
  1982年   7篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   3篇
  1977年   11篇
  1976年   7篇
  1973年   1篇
排序方式: 共有1439条查询结果,搜索用时 15 毫秒
111.
A new alkaliphilic and moderately halophilic, strictly anaerobic, fermentative bacterium (strain IMP-300T) was isolated from a groundwater sample in the zone of the former soda lake Texcoco in Mexico. Strain IMP-300T was Gram-positive, non-sporulated, motile and rod-shaped. It grew within a pH range from 7.5 to 10.5, and an optimum at 9.5. The organism was obligately dependent on the presence of sodium salts. Growth showed an optimum at 35°C with absence of growth above 45°C. It fermented peptone and a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonium. Its fatty acid pattern was mainly composed of straight chain saturated, unsaturated, and cyclopropane fatty acids. The G + C content of genomic DNA was 40.0 mol%. Analysis of the 16S rRNA gene sequence indicated that the new isolate belongs to the genus Tindallia, in the low G + C Gram-positive phylum. Phylogenetically, strain IMP-300T has Tindallia californiensis, as closest relative with a 97.5% similarity level between their 16S rDNA gene sequences, but the DNA–DNA re-association value between the two DNAs was only 42.2%. On the basis of differences in genotypic, phenotypic, and phylogenetic characteristics, strain IMP-300T is proposed as a new species of the genus Tindallia, T. texcoconensis sp. nov. (type strain IMP-300T = DSM 18041T = JCM 13990T).  相似文献   
112.
113.
Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion‐resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free‐living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion‐degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion‐treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 106/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using Vmax and Km values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont‐mediated insecticide resistance.  相似文献   
114.
The endosymbiotic relationship between cnidarians and Symbiodinium is critical for the survival of coral reefs. In this study, we developed a protocol to rapidly and freshly separate Symbiodinium from corals and sea anemones. Furthermore, we compared these freshly‐isolated Symbiodinium with cultured Symbiodinium to investigate host and Symbiodinium interaction. Clade B Symbiodinium had higher starch content and lower lipid content than those of clades C and D in both freshly isolated and cultured forms. Clade C had the highest lipid content, particularly when associated with corals. Moreover, the coral‐associated Symbiodinium had higher protein content than did cultured and sea anemone‐associated Symbiodinium. Regarding fatty acid composition, cultured Symbiodinium and clades B, C, and D shared similar patterns, whereas sea anemone‐associated Symbiodinium had a distinct pattern compared coral‐associated Symbiodinium. Specifically, the levels of monounsaturated fatty acids were lower than those of the saturated fatty acids, and the level of polyunsaturated fatty acids (PUFAs) were the highest in all examined Symbiodinium. Furthermore, PUFAs levels were higher in coral‐associated Symbiodinium than in cultured Symbiodinium. These results altogether indicated that different Symbiodinium clades used different energy storage strategies, which might be modified by hosts.  相似文献   
115.
Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self‐sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental‐scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four‐species grass–legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2‐fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one‐third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one‐third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass–legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass–legume mixtures can substantially contribute to resource‐efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.  相似文献   
116.
We describe the isolation, biochemical characterization, phylogenetic analysis, and pathogenecity of a novel entomopathogenic bacterium Brevibacterium frigoritolerans to first instar larvae of Anomala dimidiata and Holotrichia longipennis. The almost full length 16S rRNA sequence of the bacterium has 99% identity with the type strain of B. frigoritolerans, while phylogenetic analysis revealed that the isolate formed a tightly linked branch with the type strain of B. frigoritolerans. Under in vitro bioassay conditions, the isolate infected and caused 89±5.4 and 74±7.7% mortality, in first instar larvae of A. dimidiata and H. longipennis, respectively. The infected larvae exhibited bacteremia like symptoms and mortality occurred between the second and fifth weeks after inoculation. This is an early report on the entomopathogenic potential of the hitherto lesser-known bacterium Brevibacterium frigoritolerans.  相似文献   
117.
A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m2 was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m2 after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na+ and Ca2+) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.  相似文献   
118.
Lee CM  Hung GJ  Yang CF 《Bioresource technology》2011,102(18):8350-8356
In this study, a lab-scale serial photobioreactor composed of three column reactors was constructed and continuously operated to investigate several parameters influencing photohydrogen production when using the synthetic wastewater and the anaerobic hydrogen fermentation effluents as the influents. The results indicated that better hydrogen production rate was obtained when the serial photobioreactor was operated under cellular recycling at a short HRT of 8 h. The serial photobioreactor maintained high hydrogen content ca. 80% in the produced gas and 0.4× dilution ratio was the suitable ratio for hydrogen production. When the photobioreactor fed with the real wastewater (Effluent 1) containing 100 mg/L NH4Cl, Column 1 reactor successfully reduced ammonia concentration to about 60 mg/L for cell synthesis, resulting in a steady hydrogen production in the following two column reactors. The average hydrogen production rate was 205 mL-H2/L/d.  相似文献   
119.
Increasing evidence shows that protein phosphorylation on serine, threonine and tyrosine residues is a major regulatory post-translational modification in the bacteria. This review focuses on the implications of bacterial phosphoproteome in bacterial pathogenicity and highlights recent development of methods in phosphoproteomics and the connectivity of the phosphorylation networks. Recent technical developments in the high accuracy mass spectrometry have dramatically transformed proteomics and made it possible the characterization of a few exhaus- tive site-specific bacterial phosphoproteomes. The high abundance of tyrosine phosphorylations in a few bacterial phosphoproteomes suggests their roles in the pathogenicity, especially in the case of pathogen-host interactions; the high abundance of multi-phosphorylation sites in bacterial phosphoprotein is a compensation of the relatively small phosphorylation size and an indicator of the delicate regulation of protein functions.  相似文献   
120.
Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page .Electronic Supplementary Material Supplementary material is available for this article at Dedicated to Prof. Dr. h.c. Gerhard Gottschalk on the occasion of his 70th birthday.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号