首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2544篇
  免费   179篇
  国内免费   104篇
  2024年   11篇
  2023年   57篇
  2022年   92篇
  2021年   102篇
  2020年   125篇
  2019年   149篇
  2018年   123篇
  2017年   68篇
  2016年   82篇
  2015年   105篇
  2014年   161篇
  2013年   216篇
  2012年   118篇
  2011年   132篇
  2010年   112篇
  2009年   113篇
  2008年   97篇
  2007年   115篇
  2006年   104篇
  2005年   102篇
  2004年   71篇
  2003年   59篇
  2002年   58篇
  2001年   35篇
  2000年   40篇
  1999年   41篇
  1998年   44篇
  1997年   31篇
  1996年   30篇
  1995年   27篇
  1994年   32篇
  1993年   21篇
  1992年   22篇
  1991年   19篇
  1990年   17篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   12篇
  1985年   6篇
  1984年   10篇
  1983年   7篇
  1982年   8篇
  1981年   9篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2827条查询结果,搜索用时 203 毫秒
131.
The current SARS-CoV-2 pandemic diffused worldwide has encouraged the rapid development of vaccines to counter the spread of the virus. At present in Italy, 75.01% of the population completed the vaccination course (AIFA.gov.it) and very few adverse events have been recorded by now. Side-effects related to a theoretical over-reaction of the immune system in response to vaccines administration have been described, and the possibility that an autoimmune or a hyperinflammatory condition may occur was recently observed. Herein, we report four cases of hyperinflammatory syndrome with features indicative of Adult-onset Still’s disease (AOSD) and macrophage activation syndrome (MAS), occurred after anti-SARS-CoV-2 vaccine injection and seen at our Unit between March and May 2021. Since interleukin (IL)-1 is one of the pivotal cytokines involved in AOSD pathogenesis, the inhibition of IL-1 is crucial in ameliorating the clinical symptoms of those patients. Moreover, it has been highlighted the central role of IL-1 as a hallmark of the hyperinflammatory status elicited by SARS-CoV-2 infection. In this case series, we successfully employed the IL-1 receptor antagonist anakinra to curb the cytokine release likely unleashed by the vaccine stimulation in potentially predisposed subjects. We also made a literature search to detect other patients with hyperinflammation temporally related to vaccines injection who benefited from IL-1 inhibition, while other AOSD/MAS-like described syndromes improved with other immunomodulatory strategies.  相似文献   
132.
Mice heterozygously deficient in the p0 gene (P0(+/-)) are animal models for some forms of inherited neuropathies. They display a progressive demyelinating phenotype in motor nerves, accompanied by mild infiltration of lymphocytes and increase in macrophages. We have shown previously that the T lymphocytes are instrumental in the demyelination process. This study addresses the functional role of the macrophage in this monogenic myelin disorder.In motor nerves of P0(+/)- mice, the number of macrophages in demyelinated peripheral nerves was increased by a factor of five when compared with motor nerves of wild-type mice. Immunoelectron microscopy, using a specific marker for mouse macrophages, displayed macrophages not only in the endoneurium of the myelin mutants, but also within endoneurial tubes, suggesting an active role in demyelination. To elucidate the roles of the macrophages, we crossbred the myelin mutants with a spontaneous mouse mutant deficient in macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the P0-deficient double mutants also deficient in M-CSF, the numbers of macrophages were not elevated in the demyelinating motor nerves and demyelination was less severe. These findings demonstrate an active role of macrophages during pathogenesis of inherited demyelination with putative impact on future treatment strategies.  相似文献   
133.
The hypothesis of the exclusively genetic origin of cancer (cancer is a disease of genes, a tumor without any damage to the genome does not exist) dominated in the oncology until recently. A considerable amount of data confirming this hypothesis was accumulated during the last quarter of the last century. It was demonstrated that the accumulation of damage of specific genes lies at the origin of a tumor and its following progression. The damage gives rise to structural changes in the respective proteins and, consequently, to inappropriate mitogenic stimulation of cells (activation of oncogenes) or to the inactivation of tumor suppressor genes that inhibit cell division, or to the combination of both (in most cases). According to an alternative (epigenetic) hypothesis that was extremely unpopular until recently, a tumor is caused not by a gene damage, but by an inappropriate function of genes (cancer is a disease of gene regulation and differentiation). However, recent studies led to the convergence of these hypotheses that initially seemed to be contradictory. It was established that both factors–genetic and epigenetic–lie at the origin of carcinogenesis. The relative contribution of each varies significantly in different human tumors. Suppressor genes and genes of repair are inactivated in tumors due to their damage or methylation of their promoters (in the latter case an epimutation, an epigenetic equivalent of a mutation, occurs, producing the same functional consequences). It is becoming evident that not only the mutagens, but various factors influencing cell metabolism, notably methylation, should be considered as carcinogens.  相似文献   
134.
Dopamine has been hypothesized as a contributing factor for the selective degeneration of dopaminergic neurons in Parkinson's disease. However, the cytotoxic mechanisms of dopamine and its metabolites remain poorly understood. Using a stable aromatic amino acid decarboxylase (AADC) expressing a fibroblast cell line, we previously demonstrated a novel, non-oxidative cytotoxicity of intracellular dopamine. In this study, we further investigate the roles of dopamine metabolism and disposition proteins against intracellular dopamine cytotoxicity by co-expressing these factors in AADC-expressing cells. Our results indicate that overexpression of the vesicular monoamine transporter and monoamine oxidase A-induced protection against intracellular dopamine toxicity, and conversely that pharmacological inhibition of these pathways potentiated L-DOPA toxicity in catecholaminergic PC12 cells. Macrophage migration inhibitory factor and glutathione S-transferase (GST), factors that have recently been shown to be involved in dopamine metabolism, also exhibited a strong protective role against intracellular dopamine cytotoxicity. Our results support a potential role for non-oxidative cytoplasmic dopamine toxicity, and imply that disruption in dopamine disposition and/or metabolism could underlie the progressive degeneration of dopaminergic neurons in Parkinson's disease.  相似文献   
135.
Cancer is caused by the stepwise accumulation of mutations that affect growth control, differentiation and survival. The view that mutations affect discrete signalling pathways, each contributing to a specific aspect of the full malignant phenotype, has proved to be too simplistic. We now know that oncogenes and tumour suppressors depend on one another for their selective advantage, and that they affect multiple pathways that intersect and overlap. The interactive nature of each genetic change has important implications for cancer therapy and for the stepwise model of carcinogenesis.  相似文献   
136.
Representative strains of the different diarrheagenic Escherichia coli virotypes were tested for their potential cytotoxicity in the J774 macrophage cell line. All the seven virotypes of E. coli were cytotoxic to J774 macrophages, and in most cases the bacteria induced an apoptotic response. With the exception of the enterotoxigenic E. coli (ETEC) strain, all the other six virotypes caused induction of apoptosis as evidenced by quantitative analysis of the characteristic DNA fragmentation at the individual cell level. These results suggest that apoptosis could be one of the mechanisms contributing to the diarrheal disease development.  相似文献   
137.
The time-course of incorporation of NBD-cholesterol by macrophages (Ma) and lymphocytes (LY) obtained from untreated and thioglycollate-injected (thio) rats was investigated. NBD-cholesterol incorporation was also examined in Ma obtained from untreated rats and stimulated in vitro by lipopolysaccharide (LPS) and phorbol-myristate acetate (PMA). The same measurement was performed in LY from untreated rats stimulated by addition of LPS and concanavalin A (Con A) into the culture medium. Thio-treated Ma showed high fluorescence intensity after 1 h of incubation with NBD-cholesterol. Ma submitted concomitant to LPS and NBD-cholesterol showed low fluorescence intensity, as well as Ma stimulated with PMA. Ma from untreated and LPS pre-treated rats showed a similar time-course of incorporation. LY from thio-treated rats showed lower incorporation of NBD-cholesterol in comparison to LY from untreated rats. Incorporation was reduced when LPS was added concomitantly with NBD-cholesterol. On the other hand, LY pre-treated with LPS for 48 h showed a very high incorporation of NBD-cholesterol. Con A treatment did not cause a significant effect on NBD-cholesterol incorporation. The findings presented herein led us to conclude that the uptake of NBD-cholesterol by Ma and LY is markedly affected by the activation state of the cells.  相似文献   
138.
Retinoids and interferons are signaling molecules with pronounced anticancer activity. We show that in both acute promyelocytic leukemia and breast cancer cells the retinoic acid (RA) and interferon signaling pathways converge on the promoter of the tumoricidal death ligand TRAIL. Promoter mapping, chromatin immunoprecipitation and RNA interference reveal that retinoid-induced interferon regulatory factor-1 (IRF-1), a tumor suppressor, is critically required for TRAIL induction by both RA and IFNgamma. Exposure of breast cancer cells to both antitumor agents results in enhanced TRAIL promoter occupancy by IRF-1 and coactivator recruitment, leading to strong histone acetylation and synergistic induction of TRAIL expression. In coculture experiments, pre-exposure of breast cancer cells to RA and IFNgamma induced a dramatic TRAIL-dependent apoptosis in heterologous cancer cells in a paracrine mode of action, while normal cells were not affected. Our results identify a novel TRAIL-mediated tumor suppressor activity of IRF-1 and suggest a mechanistic basis for the synergistic antitumor activities of certain retinoids and interferons. These data argue for combination therapies that activate the TRAIL pathway to eradicate tumor cells.  相似文献   
139.
Increased matrix metalloproteinase-12 (MMP-12) has been implicated in atherosclerosis and many other inflammatory processes. To define MMP-12 functions in vivo, we generated transgenic rabbits that expressed human (h) MMP-12 gene under the control of a macrophage-specific promoter, the human scavenger receptor promoter. Two transgenic founder rabbits were found to have hMMP-12 transgene integration by Southern blot analysis. hMMP-12 mRNA was expressed in peritoneal and alveolar macrophages, and in tissues enriched in macrophages in transgenic rabbits. High levels of hMMP-12 protein were detected in the conditioned media of cultured peritoneal and alveolar macrophages from transgenic rabbits. Zymography showed that hMMP-12 secreted from macrophages possessed enzymatic activity toward β-casein. To evaluate the expression of hMMP-12 in inflammatory sites, we used carrageenan-induced granulomas as an in vivo model for tissue macrophages and foam cells. Granuloma size in transgenic rabbits was significantly increased compared to that in control rabbits, and histological examination revealed that granulomas of transgenic rabbits were enriched in macrophages associated with increased hMMP-12 expression. We believe that this transgenic rabbit model with increased expression of hMMP-12 may become a useful model for further mechanistic studies of MMP-12 in inflammatory diseases and cancer invasion; it is also an ideal model for testing the in vivo action of MMP-12 inhibitors.  相似文献   
140.
Genetic Defects as Tumor Markers   总被引:1,自引:0,他引:1  
Carcinogenesis is long-term multistep accumulation of defects of genes responsible for cell division, DNA repair, and apoptosis. The functions of these genes are known both for norm and for pathologies caused by their damage and resulting in asocial cell behavior. Owing to the recent progress in studying the mechanisms of carcinogenesis, some genetic defects may be considered from the applied point of view (as tumor markers rather than as pathogenetic factors) and employed in diagnostics. Thus detection of mutant alleles in biological fluids (e.g., beyond the tumor) suggests higher risk of carcinogenesis. Genetic defects are a new class of tumor markers and have a substantial diagnostic potential. In contrast to known protein markers (-fetoprotein, etc.) used in clinical practice, DNA markers are oncospecific (as these are in direct cause-and-effect relationships with carcinogenesis) and universal (as there is not a single tumor cell without a genetic defect). Analysis of DNA markers may be employed not only in diagnostics or tumor growth monitoring (assessment of treatment efficiency, early detection of recurrence or metastasis), but also (prospectively) in screening (tumor detection at the presymptomatic stage, identification of high-risk groups). Theoretical grounds, prospects, problems, and methods of this new field are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号