首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   26篇
  国内免费   85篇
  972篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   10篇
  2020年   20篇
  2019年   24篇
  2018年   24篇
  2017年   20篇
  2016年   25篇
  2015年   20篇
  2014年   28篇
  2013年   41篇
  2012年   29篇
  2011年   23篇
  2010年   11篇
  2009年   36篇
  2008年   45篇
  2007年   53篇
  2006年   41篇
  2005年   51篇
  2004年   32篇
  2003年   27篇
  2002年   36篇
  2001年   35篇
  2000年   23篇
  1999年   20篇
  1998年   27篇
  1997年   21篇
  1996年   20篇
  1995年   18篇
  1994年   17篇
  1993年   18篇
  1992年   17篇
  1991年   20篇
  1990年   20篇
  1989年   15篇
  1988年   11篇
  1987年   17篇
  1986年   13篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   16篇
  1979年   7篇
  1977年   1篇
排序方式: 共有972条查询结果,搜索用时 0 毫秒
41.
Dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and their isomers’ levels in residential soils were determined for the assessment of health risk in Korba, India. Observed concentrations of total HCH and total DDT in soils were more or less comparable with other parts of India and the world. ΣHCH and ΣDDT concentrations ranged between 0.9–20 μg kg?1 and 2–315 μg kg?1, respectively, which were lower than recommended soil quality guidelines indicating low ecotoxicological risk. Carcinogenic and non-carcinogenic impacts of HCH and DDT on human populations through soil ingestion were evaluated and presented. The incremental lifetime cancer risk (ILCR) for adults and children ranged between 7.8 × 10?10–1.6 × 10?7 and 4.1 × 10?9–8.2 × 10?7, respectively. Non-cancer health hazard quotient (HQ) ranged between 5.9 × 10?7–1.8 × 10?3 and 3.1 × 10?6–9.4 × 10?3, respectively, for adults and children. The estimated ILCR and HQ were within the safe acceptable limits of 10?6–10?4 and ≤1.0, respectively, indicating low risk to human populations from exposure to organochlorine pesticides (HCH and DDT) in the study area.  相似文献   
42.
The rate and extent of polynuclear aromatic hydrocarbons (PAH) biodegradation in a set of aged model soils that had been contaminated with crude oil at the high concentrations (i.e.,>20,000?mg/kg) normally found in the environment were measured in 90-week slurry bioremediation experiments. Soil properties such as organic matter content, mineral type, particle diameter, surface area, and porosity did not significantly influence the PAH biodegradation kinetics among the 10 different model soils. A comparison of aged and freshly spiked soils indicates that aging affects the biodegradation rate and extent only for higher-molecular-weight PAHs, while the effects of aging are insignificant for 4-ring PAHs and total PAHs. In all model soils with the exception of kaolinite clay, the rate of abiotic desorption was faster than the rate of biodegradation during the initial phase of bioremediation treatment, indicating that PAH biodegradation was limited by microbial factors. Similarly, any of the higher-molecular-weight PAHs that were still present after 90 weeks of treatment were released rapidly during abiotic desorption tests, which demonstrates that bioavailability limitations were not responsible for the recalcitrance of these hydrocarbons. Indeed, an analysis of microbial counts indicates that a severe reduction in hydrocarbon degrader populations may be responsible for the observed incomplete PAH biodegradation. Therefore, it can be concluded that the recalcitrance of PAHs during bioremediation is not necessarily due to bioavailability limitations and that these residual contaminants therefore might pose a greater risk to environmental receptors than previously thought.  相似文献   
43.
Soil samples from forest and agricultural sites in three areas of southwest France were collected to determine the effect of forest conversion to continuous intensive corn cropping with no organic matter management on soil organic carbon (C) content. Soils were humic loamy soils and site characteristics that may affect soil C were as uniform as possible (slope, elevation, texture, soil type, vegetation). Three areas were selected, with adjacent sites of various ages of cultivation (3 to 35 yr), and paired control forest sites. The ploughed horizon (0-Dt cm) and the Dt-50 cm layer were collected at each agricultural site. In forest sites, each 10 cm layer was collected systematically down to 1 meter depth. Carbon concentrations were converted to total content to a given depth as the product of concentration, depth of sample and bulk density, and expressed in units of kg m-2. For each site and each sampled layer, the mineral mass of soil was calculated, in order to base comparisons on the same soil mass rather than the same depth. The pattern of C accumulation in forest soils showed an exponential decrease with depth. Results suggested that soil organic carbon declined rapidly during the first years of cultivation, and at a slower rate thereafter. This pattern of decrease can be fitted by a bi-exponential model assuming that initial soil organic carbon can be separated into two parts, a very labile pool reduced during the first rapid decline and more refractory fractions oxidizing at a slower rate. Sampling to shallow depths (0-Dt cm) resulted in over-estimation of the rate of carbon release in proportion to the initial amount of C, and in under-estimation of the total loss of C with age. The results for the 0–50 cm horizon indicated that losses of total carbon average about 50% in these soils, ranging in initial carbon content from 19 to 32.5 kg m-2. Carbon release to the atmosphere averaged 0.8 kg m-2 yr-1 to 50 cm depth during the first 10 years of cultivation. The results demonstrate that temperate soils may also be an important source of atmospheric carbon, when they are initially high in carbon content and then cultivated intensively with no organic matter management.  相似文献   
44.
Sulphur fractionation and availability to plants are poorly understood in calcareous soils. Sixty-four calcareous soils containing varying amounts of CaCO3 were collected from ten provinces in China and their S fractions determined. Organic S was the predominant fraction of S, accounting for on average 77% of the soil total S. The amounts of adsorbed sulphate were found to be negligible. 1 M HCl extracted substantially more sulphate than either 0.01 M CaCl2 or 0.016 M KH2PO4, indicating the existence of water-insoluble but acid-soluble sulphate, probably in the form of sulphate co-precipitated with CaCO3. The concentrations of water-insoluble sulphate correlated positively with the contents of CaCO3 and accounted for 0.03–40.3% (mean 11.7%) of soil total S. To test the bioavailability of water-insoluble sulphate, a sulphate-CaCO3 co-precipitate labelled with 35S was prepared and added to a calcareous soil in a pot experiment with either NH4+ or NO3 as the N source. In 29 days, wheat plants took up 10.6% and 3.0% of the 35S added to the soil in the NH4+ and NO3 treatments, respectively. At the end of the pot experiment, the decrease of water-insoluble, acid-soluble, sulphate was more apparent in the NH4+ than in the NO3 treatment. The results indicate that sulphate co-precipitated with CaCO3 in calcareous soils may become partly available for plant uptake, depending on rhizosphere pH, if the field precipitate is similar to the laboratory prepared sample studied.  相似文献   
45.
In this study, we used denaturing gradient gel electrophoresis (DGGE) and culture-dependent methodology to characterize bacterial populations and mineral-dissolving bacteria in a mineral-rich soil profile. DGGE and sequencing revealed 13 known bacterial families and 7 unknown populations for the soil profile. Seventy-one isolates could solubilize feldspar. Weathering effectiveness and pattern of the isolates differed among the horizons. The 71 mineral-dissolving isolates were affiliated with 32 bacterial species within 14 genera, among which Bacillus, Burkholderia, and Arthrobacter were dominant. Distinct mineral-dissolving populations were observed between the surface and subsurface horizons. Notably, the deepest horizon showed maximum diversity of the mineral-dissolving bacteria. Furthermore, a significantly higher proportion of the high efficiency mineral-dissolving bacteria was observed in the deeper horizons than in the upper horizons. The results suggested that the soil profile harboured diverse mineral-dissolving populations and the dissolving potential and pattern and the community of the mineral-dissolving bacteria changed with depth.  相似文献   
46.
A semi-empirical model of methane emission from flooded rice paddy soils   总被引:13,自引:0,他引:13  
Reliable regional or global estimates of methane emissions from flooded rice paddy soils depend on an examination of methodologies by which the current high variability in the estimates might be reduced. One potential way to do this is the development of predictive models. With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factors, was developed to predict methane emission from flooded rice fields. A simplified version of the model was also derived to predict methane emission in a more practical manner. In this study, it was hypothesized that methanogenic substrates are primarily derived from rice plants and added organic matter. Rates of methane production in flooded rice soils are determined by the availability of methanogenic substrates and the influence of environmental factors. Rice growth and development control the fraction of methane emitted. The amount of methane transported from the soil to the atmosphere is determined by the rates of production and the emitted fraction. Model validation against observations from single rice growing seasons in Texas, USA demonstrated that the seasonal variation of methane emission is regulated by rice growth and development. A further validation of the model against measurements from irrigated rice paddy soils in various regions of the world, including Italy, China, Indonesia, Philippines and the United States, suggests that methane emission can be predicted from rice net productivity, cultivar character, soil texture and temperature, and organic matter amendments.  相似文献   
47.
We investigated the occurrence of entomopathogenic fungi in 1080 soil samples representing multiple locations and conditions in Korea. Entomopathogenic fungi were isolated from soils using a selective medium containing dodine and antibiotics. Following an initial identification based on morphology, the fungal isolates were more precisely identified by the sequence of their nuclear ribosomal RNA (rRNA) internal transcribed spacer (ITS) regions. As a result, entomopathogenic fungi were found to occur in 32% (342 isolates) of the soil samples studied. The most abundant species were Beauveria spp. (125 isolates) and Metarhizium spp. (82 isolates). Entomopathogenic fungi were more often recovered from natural mountain and riparian soils than from agricultural habitats. The pathogenicity of isolated fungi was evaluated by using wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. It was determined that 60% (207 isolates) of the isolates were pathogenic using this model. These entomopathogenic fungi may, therefore, have potential use against a variety of agricultural pests. This is the first study of the isolation and distribution of entomopathogenic fungi in representative sampling locations throughout Korea.  相似文献   
48.
Branco S 《Molecular ecology》2010,19(24):5566-5576
Serpentine soils impose physiological stresses that limit plant establishment and diversity. The degree to which serpentine soils entail constraints on other organisms is, however, poorly understood. Here, I investigate the effect of serpentine soils on ectomycorrhizal (ECM) fungi by conducting a reciprocal transplant experiment, where serpentine and nonserpentine ECM fungal communities were cultured in both their native and non-native soils. Contrary to expectation, serpentine soils hosted higher fungal richness compared to nonserpentine, and most species were recovered from serpentine soil, suggesting ECM fungi are not overall specialized or strongly affected by serpentine edaphic constraints.  相似文献   
49.
Studies dealing with changes in the plant internal nutrient cycling in response to natural, long-term P-fertility gradients are scarce. In this short report, we show some evidence on how leaf P dynamics can be drastically altered when plants typical from nutrient-poor sites grow in long-term P-enriched soils. The study was conducted in two natural populations of the Mediterranean evergreen shrub Pistacia lentiscus L.: one in a P-poor site and the other in a P-rich site. Soil texture and N, P, and organic matter contents were measured at each site. Leaf N and P concentrations were also measured in current-year, 1-year-old, and 2-year-old leaves, and in the senesced leaves. In the P-poor site, leaf P and N decreased as the leaves aged. This occurs because of nutrient reabsorption to other plant organs and/or dilution of nutrients by carbon compounds. In contrast, the leaves from the P-rich site acummulated P (but not N) during leaf lifespan. Consequently, P concentration in senesced leaves was very high in the P-rich site. These results show that, in long-lived perennials living in the field, long-term P enrichment can switch the normal process of P resorption during leaf aging to P accretion in the leaf. P accumulation in the leaves, which are periodically shed, might constitute a simple P excretion mechanism for plants typical from P-poor soils.  相似文献   
50.
Endospores of Pasteuria penetrans were evaluated for their vertical distribution in field soil and their downward movement through soil in the laboratory. In the field trial, the number of endospores attached to second-stage juveniles (J2) of Meloidogyne arenaria race 1 varied greatly in different soil depths. There were higher percentages of J2 with endospores attached in former weed fallow plots during the first 3 years of growing peanut than in former bahiagrass and rhizomal peanut plots (P ≤ 0.05). In weed fallow plots a higher average number of endospores per J2 were maintained in all depths, upper three depths, and upper four depths in 1999, 2000, and 2001, respectively (P ≤ 0.05). However, in 2002, there were no differences in the percentages of J2 with endospores attached and in the average of the numbers of endospores per J2 among the treatments (P > 0.05). In laboratory trials, P. penetrans endospores were observed to move throughout the soil through the percolation of water. After one application of water, some endospores were detected 25 to 37.5 cm deep. Endospores were present at the greatest depth, 37.5 to 50 cm, after the third application of water. These results indicate that rain or water applications by irrigation are likely to move endospores to deeper levels of the soil, but the majority of endospores remain in the upper 0-to-30-cm depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号