首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   137篇
  2023年   2篇
  2020年   19篇
  2019年   24篇
  2018年   34篇
  2017年   32篇
  2016年   31篇
  2015年   27篇
  2014年   22篇
  2013年   4篇
  2012年   14篇
  2011年   8篇
排序方式: 共有217条查询结果,搜索用时 187 毫秒
41.
42.
The development of a feasible and inexpensive strategy to obtain and utilize sustainable energy is an important issue for the sustainable development of human society. Over the past decade, significant progress has been made in the development of novel functional materials for energy conversion and storage. Owing to their unique physico‐chemical properties, 2D layered materials, such as graphene and transition metal dichalcogenides, have attracted great interest in energy‐related research. 1T‐MoS2 is a metallic phase of molybdenum disulfide (MoS2) with extraordinary electronic conductivity, enlarged interlayer spacing, and more electrochemically active sites along the basal plane, which offers intriguing benefits for energy‐related applications compared to its semiconducting counterpart (2H‐MoS2). This review summarizes the preparation and structure–property relationships of 1T‐MoS2, as well as the underlying relations between the metallic (1T) and semiconducting (2H) phases of MoS2. Recent progress in the preparation and stabilization of 1T‐MoS2 materials and their applications for energy conversion and storage are discussed, including water splitting to form hydrogen via photo/electrocatalysis and electricity storage in lithium‐ion batteries, sodium‐ion batteries, magnesium‐ion batteries, and supercapacitors. Optimization strategies of 1T‐MoS2 to obtain enhanced practical properties based on theoretical calculations are also presented.  相似文献   
43.
Carbon‐based supercapacitors store charge through the adsorption of electrolyte ions onto the carbon surface. Therefore, it would be more attractive for the enhanced charge storage if the locations for storing charge can be extended from carbon surface to space. Here, a novel spatial charge storage mechanism based on counterion effect from Fe(CN)63? ions bridged by oxygen groups and confined into honeycomb‐carbon frameworks is presented, which can provide additionally spatial charge storage for electrical double‐layer capacitances in a negative potential region and pseudocapacitances from Fe(CN)63?/Fe(CN)64? in a positive potential region. More importantly, an ultrafast supercapacitor based on this novelty carbon can be charged/discharged within 0.7 s to deliver both high specific energy of 15 W h kg?1 and ultrahigh specific power of 79.1 kW kg?1 in 1 m Na2SO4 electrolyte, much higher than those of previously reported asymmetric supercapacitors in aqueous electrolytes, as well as excellent cycling stability. These features suggest a new generation of ultrafast asymmetric supercapacitors as novel high‐performance energy storage devices.  相似文献   
44.
Here an all‐purpose fibrous electrode based on MoS2 is demonstrated, which can be employed for versatile energy harvesting and storage applications. In this coaxial electrode, ultrathin MoS2 nanofilms are grown on TiO2 nanoparticles coated carbon fiber. The high electrochemical activity of MoS2 and good conductivity of carbon fiber synergistically lead to the remarkable performances of this novel composite electrode in fibrous dye‐sensitized solar cells (showing a record‐breaking conversion efficiency of 9.5%) and high‐capacity fibrous supercapacitors. Furthermore, a self‐powering energy fiber is fabricated by combining a fibrous dye‐sensitized solar cell and a fibrous supercapacitor into a single device, showing very fast charging capability (charging in 7 s under AM1.5G solar illumination) and an overall photochemical‐electricity energy conversion efficiency as high as 1.8%. In addition, this wire‐shaped electrode can also be used for fibrous Li‐ion batteries and electrocatalytic hydrogen evolution reactions. These applications indicate that the MoS2‐based all‐purpose fibrous electrode has great potential for the construction of high‐performance flexible and wearable energy devices.  相似文献   
45.
46.
CuO and Cu2O are non‐noble transition metal oxide supercapacitive materials with high theoretical specific capacitances above 1800 F g?1. In this work, by adjusting organic additives of a colloidal system, Cu, Cu2O, and CuO are grown in situ on nickel foam. CuO exhibits a specific capacitance of 1355 F g?1 at 2 A g?1 in 3 m KOH, a value well above those of Cu and Cu2O (<500 F g?1), and is superior to other known CuO electrodes. The CuO electrode exhibits 70% of its initial capacity, and the Columbic efficiency remains ≈100% after 7000 cycles at 4 A g?1. Cu2O exhibits the worst electrochemical performance, mainly due to the inactive barrier layer forming on the surface. This work provides an efficient synthetic platform for both comparable supercapacitive studies and cost‐effective electrochemical energy storage applications.  相似文献   
47.
48.
49.
With the fast development of supercapacitor and triboelectric nanogenerator (TENG), it is now possible to fabricate biomimetic pressure sensors with high flexibility and sustainability. Herein, an ultrathin supercapacitor is fabricated with the paper sheet and the solid electrolyte for storing energy generated by TENG. With a sandwich design, the triboelectrodes sandwiched within the two solid supercapacitors can not only store electrical energy by a wireless energy transfer mode but also help TENG imitate the receptor's unique characteristics by simultaneously measuring both static and dynamic pressures in a self‐driven mode. In addition, the voltage of the supercapacitor increases linearly with the vibration times, which hints that this integrated device also endows functions such as vibration counting and frequency computing. This work contributes to new strategies for making multifunctional biomimetic electronics that promote the development of artificial intelligence.  相似文献   
50.
Transition metal sulfides, as an important class of inorganics, can be used as excellent electrode materials for various types of electrochemical energy storage, such as lithium‐ion batteries, sodium‐ion batteries, supercapacitors, and others. Recent works have identified that mixing graphene or graphene derivatives with transition metal sulfides can result in novel composites with better electrochemical performance. This review summarizes the latest advances in transition metal sulfide composites with graphene or graphene derivatives. The synthetic strategies and morphologies of these composites are introduced. The authors then discuss their applications in lithium‐ion batteries, sodium‐ion batteries, and supercapacitors. Finally, the authors give their personal viewpoints about the challenges and opportunities for the future development about this direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号