首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   138篇
  217篇
  2023年   2篇
  2020年   19篇
  2019年   24篇
  2018年   34篇
  2017年   32篇
  2016年   31篇
  2015年   27篇
  2014年   22篇
  2013年   4篇
  2012年   14篇
  2011年   8篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
1.
2.
Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.  相似文献   
3.
Although 2D Ti3C2Tx is a good candidate for supercapacitors, the restacking of nanosheets hinders the ion transport significantly at high scan rates, especially under practical mass loading (>10 mg cm?2) and thickness (tens of microns). Here, Ti3C2Tx‐NbN hybrid film is designed by self‐assembling Ti3C2Tx with 2D arrays of NbN nanocrystals. Working as an interlayer spacer of Ti3C2Tx, NbN facilitates the ion penetration through its 2D porous structure; even at extremely high scan rates. The hybrid film shows a thickness‐independent rate performance (almost the same rate capabilities from 2 to 20 000 mV s?1) for 3 and 50 µm thick electrodes. Even a 109 µm thick Ti3C2Tx‐NbN electrode shows a better rate performance than 25 µm thick pure Ti3C2Tx electrodes. This method may pave a way to controlling ion transport in electrodes composed of 2D conductive materials, which have potential applications in high‐rate energy storage and beyond.  相似文献   
4.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   
5.
Silver grids are attractive for replacing indium tin oxide as flexible transparent conductors. This work aims to improve the electrochemical stability of silver‐based transparent conductors. A silver grid/PEDOT:PSS hybrid film with high conductivity and excellent stability is successfully fabricated. Its functionality for flexible electrochromic applications is demonstrated by coating one layer of WO3 nanoparticles on the silver grid/PEDOT:PSS hybrid film. This hybrid structure presents a large optical modulation of 81.9% at 633 nm, fast switching, and high coloration efficiency (124.5 cm2 C?1). More importantly, an excellent electrochemical cycling stability (sustaining 79.1% of their initial transmittance modulation after 1000 cycles) and remarkable mechanical flexibility (optical modulation decay of only 7.5% after 1200 compressive bending cycles) is achieved. A novel smart supercapacitor is presented that functions as a regular energy‐storage device and simultaneously monitors the level of stored energy by a rapid and reversible color variation even at high current charge/discharge conditions. The film sustains an optical modulation of 87.7% and a specific capacitance of 67.2% at 10 A g?1 compared to their initial value at a current density of 1 A g?1. The high‐performance silver grid/PEDOT:PSS hybrid transparent films exhibit promising features for various emerging flexible electronics and optoelectronic devices.  相似文献   
6.
Energy storage devices are arousing increasing interest due to their key role in next‐generation electronics. Integration is widely explored as a general and effective strategy aiming at high performances. Recent progress in integrating a variety of functions into electrochemical energy storage devices is carefully described. Through integration at the level of materials: flexible, stretchable, responsive, and self‐healing devices are discussed to highlight the state‐of‐the‐art multi‐functional electronics. Through the integration at the level of devices, the incorporation of photovoltaic and piezoelectric devices is detailed to reflect the advances in self‐powering electronics. Integrated energy storage devices are presented for wearable applications to indicate a new growth direction. The main challenges and important directions are summarized to offer some useful clues for future development.  相似文献   
7.
8.
9.
Two kinds of free‐standing electrodes, reduced graphene oxide (rGO)‐wrapped Fe‐doped MnO2 composite (G‐MFO) and rGO‐wrapped hierarchical porous carbon microspheres composite (G‐HPC) are fabricated using a frozen lake‐inspired, bubble‐assistance method. This configuration fully enables utilization of the synergistic effects from both components, endowing the materials to be excellent electrodes for flexible and lightweight electrochemical capacitors. Moreover, a nonaqueous HPC‐doped gel polymer electrolyte (GPE‐HPC) is employed to broad voltage window and improve heat resistance. A fabricated asymmetric supercapacitor based on G‐MFO cathode and G‐HPC anode with GPE‐HPC electrolyte achieves superior flexibility and reliability, enhanced energy/power density, and outstanding cycling stability. The ability to power light‐emitting diodes also indicates the feasibility for practical use. Therefore, it is believed that this novel design may hold great promise for future flexible electronic devices.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号