首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7697篇
  免费   483篇
  国内免费   1354篇
  9534篇
  2024年   43篇
  2023年   156篇
  2022年   270篇
  2021年   319篇
  2020年   341篇
  2019年   318篇
  2018年   269篇
  2017年   268篇
  2016年   288篇
  2015年   251篇
  2014年   344篇
  2013年   651篇
  2012年   298篇
  2011年   364篇
  2010年   264篇
  2009年   465篇
  2008年   470篇
  2007年   399篇
  2006年   363篇
  2005年   380篇
  2004年   255篇
  2003年   243篇
  2002年   235篇
  2001年   169篇
  2000年   146篇
  1999年   146篇
  1998年   126篇
  1997年   142篇
  1996年   135篇
  1995年   139篇
  1994年   154篇
  1993年   137篇
  1992年   113篇
  1991年   97篇
  1990年   114篇
  1989年   86篇
  1988年   58篇
  1987年   48篇
  1986年   68篇
  1985年   82篇
  1984年   79篇
  1983年   37篇
  1982年   38篇
  1981年   28篇
  1980年   24篇
  1979年   29篇
  1978年   20篇
  1977年   37篇
  1976年   14篇
  1975年   5篇
排序方式: 共有9534条查询结果,搜索用时 15 毫秒
961.
Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway.  相似文献   
962.
963.
964.
Prior work showed that expression of acyl carrier proteins (ACPs) of a diverse set of bacteria replaced the function of Escherichia coli ACP in lipid biosynthesis. However, the AcpAs of Lactococcus lactis and Enterococcus faecalis were inactive. Both failed to support growth of an E. coli acpP mutant strain. This defect seemed likely because of the helix II sequences of the two AcpAs, which differed markedly from those of the proteins that supported growth. To test this premise, chimeric ACPs were constructed in which L. lactis helix II replaced helix II of E. coli AcpP and vice versa. Expression of the AcpP protein L. lactis AcpA helix II allowed weak growth, whereas the L. lactis AcpA-derived protein that contained E. coli AcpP helix II failed to support growth of the E. coli mutant strain. Replacement of the L. lactis AcpA helix II residues in this protein showed that substitution of valine for the phenylalanine residue four residues downstream of the phosphopanthetheine-modified serine gave robust growth and allowed modification by the endogenous AcpS phosphopantetheinyl transferase (rather than the promiscuous Sfp transferase required to modify the L. lactis AcpA and the chimera of L. lactis AcpA helix II in AcpP). Further chimera constructs showed that the lack of function of the L. lactis AcpA-derived protein containing E. coli AcpP helix II was due to incompatibility of L. lactis AcpA helix I with the downstream elements of AcpP. Therefore, the origins of ACP incompatibility can reside in either helix I or in helix II.  相似文献   
965.
The liver hormone hepcidin is the central regulator of systemic iron metabolism. Its increased expression in inflammatory states leads to hypoferremia and anemia. Elucidation of the mechanisms that up-regulate hepcidin during inflammation is essential for developing rational therapies for this anemia. Using mouse models of inflammatory bowel disease, we have shown previously that colitis-associated hepcidin induction is influenced by intestinal microbiota composition. Here we investigate how two commensal bacteria, Bifidobacterium longum and Bacteroides fragilis, representative members of the gut microbiota, affect hepcidin expression. We found that supernatants of a human macrophage cell line infected with either of the bacteria up-regulated hepcidin when added to a human hepatocyte cell line. This activity was abrogated by neutralization of IL-1β. Moreover, purified IL-1β increased hepcidin expression when added to the hepatocyte line or primary human hepatocytes and when injected into mice. IL-1β activated the bone morphogenetic protein (BMP) signaling pathway in hepatocytes and in mouse liver, as indicated by increased phosphorylation of small mothers against decapentaplegic proteins. Activation of BMP signaling correlated with IL-1β-induced expression of BMP2 in human hepatocytes and activin B in mouse liver. Treatment of hepatocytes with two different chemical inhibitors of BMP signaling or with a neutralizing antibody to BMP2 prevented IL-1β-induced up-regulation of hepcidin. Our results clarify how commensal bacteria affect hepcidin expression and reveal a novel connection between IL-1β and activation of BMP signaling. They also suggest that there may be differences between mice and humans with respect to the mechanism by which IL-1β up-regulates hepcidin.  相似文献   
966.
The c-type cytochromes are electron transfer proteins involved in energy transduction. They have heme-binding (CXXCH) sites that covalently ligate heme b via thioether bonds and are classified into different classes based on their protein folds and the locations and properties of their cofactors. Rhodobacter capsulatus produces various c-type cytochromes using the cytochrome c maturation (Ccm) System I, formed from the CcmABCDEFGHI proteins. CcmI, a component of the heme ligation complex CcmFHI, interacts with the heme-handling protein CcmE and chaperones apocytochrome c2 by binding its C-terminal helix. Whether CcmI also chaperones other c-type apocytochromes, and the effects of heme on these interactions were unknown previously. Here, we purified different classes of soluble and membrane-bound c-type apocytochromes (class I, c2 and c1, and class II c′) and investigated their interactions with CcmI and apoCcmE. We report that, in the absence of heme, CcmI and apoCcmE recognized different classes of c-type apocytochromes with different affinities (nm to μm KD values). When present, heme induced conformational changes in class I apocytochromes (e.g. c2) and decreased significantly their high affinity for CcmI. Knowing that CcmI does not interact with mature cytochrome c2 and that heme converts apocytochrome c2 into its b-type derivative, these findings indicate that CcmI holds the class I apocytochromes (e.g. c2) tightly until their noncovalent heme-containing b-type cytochrome-like intermediates are formed. We propose that these intermediates are subsequently converted into mature cytochromes following the covalent ligation of heme via the remaining components of the Ccm complex.  相似文献   
967.
The S100 family of EF-hand calcium (Ca2+)-binding proteins is essential for a wide range of cellular functions. During infection, certain S100 proteins act as damage-associated molecular patterns (DAMPs) and interact with pattern recognition receptors to modulate inflammatory responses. In addition, these inflammatory S100 proteins have potent antimicrobial properties and are essential components of the immune response to invading pathogens. In this review, we focus on S100 proteins that exhibit antimicrobial properties through the process of metal limitation, termed nutritional immunity, and discuss several recent advances in our understanding of S100 protein-mediated metal sequestration at the site of infection.  相似文献   
968.
Members of the YidC/Oxa1/Alb3 protein family mediate membrane protein insertion, and this process is initiated by the assembly of YidC·ribosome nascent chain complexes at the inner leaflet of the lipid bilayer. The positively charged C terminus of Escherichia coli YidC plays a significant role in ribosome binding but is not the sole determinant because deletion does not completely abrogate ribosome binding. The positively charged cytosolic loops C1 and C2 of YidC may provide additional docking sites. We performed systematic sequential deletions within these cytosolic domains and studied their effect on the YidC insertase activity and interaction with translation-stalled (programmed) ribosome. Deletions within loop C1 strongly affected the activity of YidC in vivo but did not influence ribosome binding or substrate insertion, whereas loop C2 appeared to be involved in ribosome binding. Combining the latter deletion with the removal of the C terminus of YidC abolished YidC-mediated insertion. We propose that these two regions play an crucial role in the formation and stabilization of an active YidC·ribosome nascent chain complex, allowing for co-translational membrane insertion, whereas loop C1 may be involved in the downstream chaperone activity of YidC or in other protein-protein interactions.  相似文献   
969.
Firmicutes multidrug resistance inc18 plasmids encode parS sites and two small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins to ensure faithful segregation. Protein ω2 binds to parS DNA, forming a short left-handed helix wrapped around the full parS, and interacts with δ2. Protein δ2 interacts with ω2 and, in the ATP-bound form, binds to nonspecific DNA (nsDNA), forming small clusters. Here, we have mapped the ω2·δ2 and δ2·δ2 interacting domains in the δ2 that are adjacent to but distinct from each other. The δ2 nsDNA binding domain is essential for stimulation of ω2·parS-mediated ATP hydrolysis. From the data presented here, we propose that δ2 interacts with ATP, nsDNA, and with ω2 bound to parS at near equimolar concentrations, facilitating a δ2 structural transition. This δ2 “activated” state overcomes its impediment in ATP hydrolysis, with the subsequent release of both of the proteins from nsDNA (plasmid unpairing).  相似文献   
970.
Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host–parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ?2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host–parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host–parasite specialization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号