首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   9篇
  国内免费   30篇
  2023年   2篇
  2022年   8篇
  2021年   5篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   4篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   47篇
  2012年   5篇
  2011年   13篇
  2010年   8篇
  2009年   19篇
  2008年   10篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   19篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   12篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   6篇
  1984年   9篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   6篇
  1973年   1篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
91.
The macromolecules DNA, RNA, and glycogen (CHO)N were extracted with phenol from eggs, sperm, and the combined gill, mantle, and digestive gland tissues of oysters, using methods effective for the HeLa cells. From the eggs, most of the (CHO)N and RNA coprecipitated in 20% ethanol whereas the DNA precipitated from 50% ethanol solutions. From the combined tissues all three macromolecules precipitated in 20% ethanol whereas from sperm they precipitated from 50% ethanol solutions. The DNA preparation from sperm was viscous and white but contained mostly (CHO)N and some RNA. However, the DNA-(CHO)N-RNA preparation was rendered insoluble in saline by CaPO4 treatment and was not toxic for mammalian kidney cells in tissue culture. Thus, the methods do not yield pure nucleic acids but appear suitable for attempts to extract infectious DNA from oysters.  相似文献   
92.
The enzymology and kinetics of tyrosine phenol lyase (TPL) from Erwinia herbicola, and tyrosine decarboxylase (TDC) from Streptococcus faecalis have been investigated for potential use in a coimmobilized multienzyme biocatalytic system for the production of dopamine. In this multienzyme biotransformation using whole cells optimized for each of the respective enzymes, TPL catalyzes the production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) from catechol, pyruvate, and ammonium, and this is subsequently decarboxylated by TDC to produce dopamine. Performing the reactions simultaneously, thereby removing L-dopa, is one option for overcoming the TPL equilibrium constraints. The enzymes have different optimal pH values, so the reaction kinetics at a compromise pH of 7.1, where both enzymes could be operated simultaneously, were investigated. For the concentration range investigated, TPL followed pseudo-first-order kinetics with respect to catechol, pyruvate, and ammonium. TDC exhibited significant product inhibition as well as inhibition by combinations of catechol and pyruvate.  相似文献   
93.
The Michaelis-Menten biodegradation kinetics (k and Ks) of aromatic compounds and trichloroethene (TCE) by an aerobic enrichment culture grown on phenol and dominated by a unique filamentous bacterium were measured. The average k and Ks values for phenol, benzene (B), toluene (T), ethylbenzene (E), o-xylene (oX), p-xylene (pX), naphthalene and TCE in g per g VSS-d and mg L-1 were 5.72 and 0.34, 1.20 and 0.51, 2.09 and 0.47, 0.77 and 0.23, 0.61 and 0.16, 0.73 and 0.23, 0.17 and 0.18, and 0.16 and 0.18, respectively. Significant variability in these measured kinetics was noted between tests conducted over the 5-month period during which the fed-batch culture with a 5-day solids retention time was maintained; the coefficient of variation of the k and Ks values ranged from 11–43% and 4–50%, respectively. This variation was significantly greater than the method measurement error on a given date. Degradation of BTEoXpX mixtures could be described by a basic competitive inhibition model.Batch tests during which the culture was fed individual BTEX compounds showed the culture grew poorly on the xylenes and had poor subsequent xylene degradation rates. This work indicates the potential to simultaneously treat a mixture of volatile organic compounds using this consortium, and the ability to predict the mixture biodegradation rates on the basis of the individual compound biodegradation kinetics.  相似文献   
94.
Batch experiments on the simultaneous utilization of phenol (primary substrate) and 4-chlorophenol (cometabolic secondary substrate) demonstrated two critical substrate interactions. First, the cometabolic degradation of 4-chlorophenol was proportional to the rate of phenol oxidation, which provided the electrons for the initial monooxygenase reaction. Second, 4-chlorophenol inhibited the oxidation of the primary substrate, phenol. Modeling analyses of the degradation of phenol alone and of phenol and 4-chlorophenol together showed that the proportionality between phenol and 4-chlorophenol degradation rates averaged 0.1 mg 4-CP/mg phenol, which corresponds to 0.5% of the electrons generated by phenol oxidation being used as a cosubstrate for the monooxygenase reaction of 4-chlorophenol. In addition, modeling analyses suggest that 4-chlorophenol was a noncompetitive inhibitor of phenol oxidation for high phenol concentrations, but a competitive inhibitor for low phenol concentrations.Abbreviations GC gas chromatography - FID flame-ionization detector - DO dissolved oxygen - 4-CP 4-chlorophenol - Ph phenol - RLS relative least squares criterion - NAD nicotinamide adenine dinucleotide - NADP nicotinamide adenine dinucleotide phosphate  相似文献   
95.
A large and increasing volume of wastewater is produced globally by the winery and distillery industries. These wastewaters are generally acidic, high in chemical oxygen demand (COD) and color, and may contain phenolic compounds that can inhibit biological treatment systems. Treatment of distillery and phenolic compound–rich wastewaters by physicochemical, aerobic biological systems and hybrid treatment methods are discussed, as well as products derived from fungal treatment. White-rot fungi have been shown to exhibit unique biodegradation capabilities, primarily due to their production of extracellular and broad substrate range enzymes that are capable of mineralizing lignin, a recalcitrant biopolymer. One of these enzymes, laccase, catalyses the oxidation of various organic compounds with the subsequent reduction of molecular oxygen to water. Laccase synthesis, induction, and inhibition are discussed with the utilization of waste residues for laccase production and the enzyme's potential industrial applications. Distillery wastewaters offer a unique, presterilized, potential growth substrate for the production of lignolytic enzymes such as laccase. Compounds may be utilized for enzyme and biomass production resulting in remediation by the growing fungus.  相似文献   
96.
Bile acids have been shown to inhibit human (h) carbonic anhydrases (CA, EC 4.2.1.1) along the gastrointestinal tract, including hCA II. The elucidation of the hormonal inhibition mechanism of the bile acid cholate to hCA II was provided in 2014 by X-ray crystallography. Herein, we extend the inhibition study to a wealth of steroids against four relevant hCA isoforms. Steroids displaying pendants and functional groups of the carboxylate, phenolic or sulfonate types appended at the tetracyclic ring were shown to inhibit the cytosolic CA II and the tumor-associated, transmembrane CA IX in a medium micromolar range (38.9–89.9?µM). Docking studies displayed the different chemotypes CA inhibition mechanisms. Molecular dynamics (MD) gave insights on the stability over time of hyocholic acid binding to CA II.  相似文献   
97.
An experiment was conducted to study the effect of plant extracts on soluble sugar, soluble phenol and defence-related enzymes response against Alternaria blight in mustard crop. The efficacy of six selected plant extracts (5 and 10%) used as foliar sprays at 60 and 70 days after sowing and mustard leaves was used for investigation. The results indicate that soluble phenol and sugar content in mustard leaves significantly increases in response to spraying of Azadirachta indica seed kernel, Calotropis procera and A. indica leaf extracts. The soluble protein, viz. peroxidase, polyphenol oxidase and phenylalanine ammonia lyase content, was higher in mustard leaves sprayed with C. procera leaves extract, A. indica seed kernel and Allium sativum bulb extract.  相似文献   
98.
A simple molecular fluorescence spectrometer based on a hand-held CCD spectrometer was constructed for on-line monitoring of the photodegradation of pollutants. A high-pressure Hg vapour lamp was used for the UV photodegradation and simultaneously for the fluorescence excitation. Phenol and 2-naphthol were selected as the targets for this preliminary study. Using peak fluorescence, figures of merit for monitoring these two hydroxybenzene were obtained. Degradation efficiencies with different homogeneous photocatalyst systems were investigated, including UV only, UV/H(2)O(2) and UV/Fe(3+) degradation systems. The kinetics modelling showed that their photodegradation fitted the Langmuir-Hinshelwood model. Results showed that the proposed method is potentially applicable to both on-line real-time monitoring and field analysis.  相似文献   
99.
Using phenol-degrading Rhodococcus erythropolis cells, the stimulative effect of a homogenous electromagnetic field (EMF) (magnetic induction 10–130 mT) on the growth and utilization of phenol (0.3–1.2 g/L) was investigated. Similarly, the EMF effect was tested on a R. erythropolis biofilm formation, which was found to increase the cell adhesion abilities significantly. Detected magnetic stimulation of cell adhesion disposition was supplemented with the results of cell surface hydrophobicity and chemical composition analysis.  相似文献   
100.
Summary The response of a pollutant-degrading bacterium P. putida CP1 to stresses was investigated. The growth on the mono-chlorophenols resulted in a decrease in dry weight of the organism, although there was an increase in cell number. There was a change of bacterial shape from rod to round as well as the reduction of cell size when grown on phenol and chlorophenols. Changes in cell shape and size were also evident in glucose-free medium, which suggested that alteration of cell shape from rod to round as well as reduction of cell size were due to nutritional stress. The increase in cell number but a drop in dry weight correlated with the reduction of cell size and shape. The organism flocculated with chlorophenols but not with phenol. The cause of flocculation was due to the toxicity of chlorophenol. Isomerization of cis to trans forms of the unsaturated fatty acids in P. putida CP1 occurred under conditions of environmental stress. Trace amounts of the polyunsaturated fatty acid linoleic acid (cis-9, cis-12-octadecadienoic acid) rarely found in bacterial membranes and oleic acid (cis-9-octadecanoic acid), which is a typical product of aerobic fatty acid synthesis, were found in P. putida CP1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号