首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   9篇
  国内免费   30篇
  2023年   2篇
  2022年   8篇
  2021年   5篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   4篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   47篇
  2012年   5篇
  2011年   13篇
  2010年   8篇
  2009年   19篇
  2008年   10篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   19篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   12篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   6篇
  1984年   9篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   6篇
  1973年   1篇
排序方式: 共有429条查询结果,搜索用时 31 毫秒
31.
Kinetics of inactivation of horseradish peroxidase (HP) induced by low-frequency ultrasonic (US) treatment (27 kHz) with the specific power of 60 W/cm2 were studied in phosphate (pH 7.4) and acetate (pH 5.2) buffers within the temperature range of 36.0 to 50.0°C and characterized by effective first-order rate constants of US inactivation k in (us) in min–1. Values of k in (us) depend on the specific ultrasonic power within the range of 20-60 W/cm2, on the concentration of HP, and on pH and temperature of the solutions. The activation energy of US inactivation of HP is 9.4 kcal/mole. Scavengers of HO· radicals, mannitol and dimethylformamide, significantly inhibit the US inactivation of HP at 36.0°C, whereas micromolar concentrations of polydisulfide of gallic acid (poly(DSG)) and of poly(2-aminodisulfide-4-nitrophenol) (poly(ADSNP)) virtually completely suppress the US inactivation of peroxidase at the ultrasonic power of 60 W/cm2 on the sonication of the enzyme solutions for more than 1 h at pH 5.2. Various complexes of poly(DSG) with human serum albumin effectively protect HP against the US inactivation in phosphate buffer (pH 7.4). The findings unambiguously confirm a free radical mechanism of the US inactivation of HP in aqueous solutions. Polydisulfides of substituted phenols are very effective protectors of peroxidase against inactivation caused by US cavitation.  相似文献   
32.
Comamonas terrigena N3H is a gram-negative rod-shaped bacterium that was isolated from contaminated soil in Slovakia. This bacterium showed remarkable biodegradation properties. We investigated the expression and functioning of two catalase isozymes in this bacterium. The typical catalase could be induced by cadmium ions, whereas the catalase-peroxidase enzyme was constitutively expressed. Since C. terrigena lacks the key enzyme for complete degradation of phenols (phenolhydroxylase), we analysed the possible removal of phenol by the two catalases of this bacterium. Addition of phenol to the culture medium led to increased expression of the catalase-peroxidase. Applying oxidative stress prior to phenol administration markedly induced the expression of the typical catalase, irrespective of the nature of the added agent. Thus, the rate of phenol degradation is rather reduced under these conditions, while growth of the cells is not impaired. We concluded that phenol peroxidation in C. terrigena can be largely attributed to the action of a catalase-peroxidase. The potential application of this enzyme in the removal of phenol from the environment is discussed.  相似文献   
33.
When Candida tropicalis was grown on phenol, catechol or resorcinol, the highest levels of specific activity of phenol hydroxylase (EC. 1.14.13.7) and catechol 1,2-dioxygenase (EC. 1.13.11.1) were attained with phenol. With the three aromatic compounds tested, the yeast cells exhibited sharp peaks of specific activity of both enzymes at particular incubation times. Phenol-induced cells containing high levels of both enzymes were capable of degrading rapidly and without delay 4-chlorophenol and 2,6-dichlorophenol, and to a lesser extend pentachlorophenol. However, the yeast could not grow on chlorophenols as major carbon and energy source.  相似文献   
34.
A new class of NO-donor phenol derivatives is described. The products were obtained by joining appropriate phenols with either nitrooxy or 3-phenylsulfonylfuroxan-4-yloxy moieties. All the compounds proved to inhibit the ferrous salt/ascorbate induced lipidic peroxidation of membrane lipids of rat hepatocytes. They were also capable of dilating rat aorta strips precontracted with phenylephrine.  相似文献   
35.
Wang SJ  Loh KC 《Biodegradation》2001,12(3):189-199
A kinetic model to describe the degradation of phenol and cometabolictransformation of 4-chlorophenol (4-cp) in the presence of sodium glutamate(SG) has been developed and validated experimentally. The integrated modelaccounts for cell growth, toxicity of 4-cp, cross-inhibitions among the threesubstrates, and the different roles of the specific growth substrate (phenol)and the conventional carbon source (SG) in the cometabolism of 4-cp. In thisternary substrate system, the overall phenol degradation and 4-cp transformation rates are greatly enhanced by the addition of SG since SG is able to attenuate the toxicity of 4-cp and therefore increase the cell growth rate. Model analysis indicates that the maximum specific degradation rate of phenol (0.819 mg (mg.h)-1) is lowered by SG by up to 46% whereas the specific transformation rate of 4-cp is notdirectly affected by the presence of SG. The competitive inhibition coefficient of 4-cp to phenol degradation (Ki,cp) and that of phenol to 4-cp transformation (Ki,ph) were determined to be 6.49 mg l-1 and 0.193 mg l-1, respectively, indicatingthat phenol imposes much larger competitive inhibition to 4-cp transformation than the converse. The model developed can simultaneously predict phenol degradation and 4-cp transformation, and is useful for dealing with cometabolism involving multiple substrates.  相似文献   
36.
Segment condensation reaction of sparingly soluble protected peptides proceeded smoothly in CHCl3-phenol mixed solvent without danger of epimerization or of significant ester formationwith the carboxyl component when 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) was employedin the presence of 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine(HOOBt). The optimal conditions for enhancement of peptide coupling mediated by EDC/HOOBt in CHCl3-phenol were determined and successfully applied to the synthesis of amyloid -peptide (1-42), (1-43) and [Pyr3]-(3-42). These peptides of high homogeneity were used to examine the relation between structure and amyloidogenesis by means of CD spectra andfluorimetric assay.  相似文献   
37.
The microbial conversion of toxic substrates into valuable products in continuous culture requires the equivalent of a tight rope walk between formation of the desired product and intoxication of the microbial catalyst. The condition of the latter is reflected immediately by changes in heat flow rate and beta-dispersion in an electrical RF field. Therefore, these were applied to the example of the continuous growth-associated synthesis of polyhydroxyalcanoates (PHA) from phenol by the bacterial strain Variovorax paradoxus DSM 4065. By controlling the supply of phenol to the chemostat, the rates of degradation, biomass formation, and synthesis of target product, respectively, were increasingly elevated until the onset of poisoning the organisms. The boundary between the maximum rates and the initiation of intoxication coincided with a sudden change in the heat flux. Using this occurrence, it was possible to develop a control strategy and test it successfully for a time period of 80 h. After 40 h the process stabilized at mean values, i.e., at rates of 92% phenol degradation, 100% biomass formation, and 70 - 75% of PHA formation compared with the situation shortly before poisoning the organisms. Using a moving-average technique to filter the raw dielectric spectroscope data, changes were followed in biomass concentration of approximately 100 mg/L. However, this technique was not sensitive or rapid enough to control the process.  相似文献   
38.
A new low-molecular-weight peptide with phenol oxidase activity, named Pc factor, was isolated and purified from liquid culture of a white-rot basidiomycete Phanerochaete chrysosporium. Its molecular weight was about 600 Da estimated by gel-filtration. Three amino acids Glu, Gly and Val were detected in hydrolysate. Absorption peaks corresponding to amino acids and peptide were observed by UV and IR spectra analysis. And the signal of Cα of amino acid was also detected by 13C-NMR method. Pc factor had high thermostability and remained active in weakly alkalescent pH range. It could chelate Fe3+ and reduce it to Fe2+, but no hydroxyl radical HO▪ could be detected during the reaction process. It could oxidize phenolic lignin-model compounds such as 2,6-dimethoxyphenol (2,6-DMP), 2,2¢-azinobis (3-ethylbenzathiazoline-6-sulfinic acid) (ABTS) and syringaldazine in the absence of Mn2+ and H2O2. These characteristics differed greatly from those of manganese peroxi-dases. The oxidative catalysis of Pc factor can be enhanced by certain metal ions such as Cu2+ and Mn2+ etc., and O2 molecule was necessary for this reaction. In summary, Pc factor may function as an electron carrier in this novel oxidation-reduction system.  相似文献   
39.
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25°C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号