首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   9篇
  国内免费   30篇
  2023年   2篇
  2022年   8篇
  2021年   5篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   4篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   47篇
  2012年   5篇
  2011年   13篇
  2010年   8篇
  2009年   19篇
  2008年   10篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   19篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   12篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   6篇
  1984年   9篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   6篇
  1973年   1篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
111.
Dynamics of phenol degradation by Pseudomonas putida   总被引:3,自引:0,他引:3  
Pure cultures of Pseudomonas putida (ATCC 17484) were grown in continuous culture on phenol at dilution rates of 0.074-0.085 h(-1) and subjected to step increases in phenol feed concentration. Three distinct patterns of dynamic response were obtained depending on the size of the step change used: low level, moderate level, or high level. During low level responses no accumulations of phenol or non-phenol, non-glucose-dissolved organic carbon, DOC(NGP), were observed. Moderate level responses were characterized by the transient accumulation of DOC(NGP) with a significant delay prior to phenol leakage. High level responses demonstrated a rapid onset of phenol leakage and no apparent accumulations of DOC(NGP). The addition of phenol to a continuous culture of the same organism on glucose did not result in transient DOC(NGP) accumulations, although transient phenol levels exceeded 90 mg l(-1). These results were consistent with intermediate metabolite production during phenol step tests coupled with substrate-inhibited phenol uptake and suggested that traditional kinetic models based on the Haldane equation may be inadequate for describing the dynamics of phenol degrading systems. (c) 1993 John Wiley & Sons, Inc.  相似文献   
112.
The purpose of this study is to investigate the feasibility of biologically removing phenol from waste gases by means of a biofilter using a Pseudomonas putida strain. Two series of both batch and continuous tests have been performed in order to ascertain the microbial degradation of phenol. For the preliminary batch tests, carried out in order to test the effective feasibility of the process and to investigate their kinetic behavior, two different microbial cultures belonging to the Pseudomonas genus have been employed, a heterogeneous culture and a pure strain of P. putida. The results of these comparative investigation showed that the pure culture is more efficient than the mixed one, even when the latter has undergone three successive acclimatization tests. The continuous experiments have been conducted during a period of about 1 year in a laboratory-scale column, packed with a mixture of peat and glass beads, and utilizing the pure culture of P. putida as microflora and varying the inlet phenol concentration from 50 up to 2000 mg m(-3). The results obtained show that high degrees of conversion can be obtained (0.93/0.996) operating at a residence time of 54 s. (c) 1993 John Wiley & Sons, Inc.  相似文献   
113.
Anaerobic phenol degradation has been shown to proceed via carboxylation of phenol to 4-hydroxybenzoate. However, in vitro the carboxylating enzyme was inactive with phenol; only phenylphosphate (phosphoric acid monophenyl ester) was readily carboxylated. We demonstrate in a denitrifying Pseudomonas strain that phenylphosphate is the first detectable product formed from phenol in whole cells and that subsequent phenylphosphate consumption parallels 4-hydroxybenzoate formation. These kinetics are consistent with phosphorylation being the first step in anaerobic phenol degradation. Various cosubstrates failed so far to act as phosphoryl donor for net phosphorylation of phenol in cell extracts. Yet, cells anaerobically grown with phenol contained an enzyme that catalyzed an isotope exchange between [U-14C]phenol and phenylphosphate. This transphosphorylation activity was anaerobically induced by phenol but was stable under aerobic conditions and required Mn2+ and polyethylene glycol. Activity was optimal at pH 5.5 and half-maximal with 0.6 mM Mn2+, 0.2 mM phenylphosphate, and 1 mM phenol. It is proposed that the phenol exchange/transphosphorylation reaction is catalyzed as partial reaction by an inducible phenol phosphorylating enzyme. The isotope exchange demands that a phosphorylated enzyme was formed in the course of the reaction, which might be similar to the phosphotransferase system of sugar transport.  相似文献   
114.
苯酚在蚕桑生态系统中的积累和迁移潘如圭,吴长年,陈为民,管竟芳,王静江,陈德梅(江苏省植物研究所南京210014)(江苏省浒墅关蚕种场)AccumnulationaudMigrationofPhenolinSericulturalEcosystem....  相似文献   
115.
Bicarbonate depletion of chloroplast thylakoids reduces the affinity of the herbicide, ioxynil, to its binding site in Photosystem (PS) II. This herbicide is found to be a relatively more efficient inhibitor of the Hill reaction when HCO?3 is added to CO2-depleted thylakoids in subsaturating rather than in saturating concentrations. The reason for this dependence of the inhibitor efficiency on the HCO?3 concentration is that the inactive HCO?3-deficient PS II reaction chains bind less ioxynil than the active PS II electron-transport chains that have bound HCO?3, and, thus, after addition of a certain amount of ioxynil the concentration of the free herbicide increases when the HCO?3 concentration decreases. Therefore, the inhibition of electron transport by ioxynil increases at decreasing HCO?3 levels. Measurements on the effects of modification of lysine and arginine residues on the rate of electron transport are also presented: the rate of modification is faster in the presence than in the absence of HCO?3. Therefore, we suggest that surface-exposed lysine or arginine residues are not involved in binding of HCO?3 (or CO2 or CO2?3) to its binding protein, but that HCO?3 influences the conformation of its binding environment such that the affinity for certain herbicides and the accessibility for amino acid modifiers are changed.  相似文献   
116.
Aims:  To investigate the effect of a mixture of rhamnolipid R1 and R2 biosurfactants produced by a Pseudomonas aeruginosa strain on the toxicity of phenol and chlorophenols to Pseudomonas putida DOT-T1E.
Methods and Results:  Toxicity was quantified by the effective concentration 50% (EC50), that is the concentration that causes a 50% inhibition of bacterial growth. The presence of 300 mg l−1 rhamnolipids, that is at about twice their critical micelle concentration (CMC), increased the EC50 of phenol, 4-chlorophenol, 2,4-dichlorophenol and 2,4,5-trichlorophenol by about 12, 19, 32 and 40%, respectively, and consequently reduced the bioavailability and the freely dissolved concentration of the toxic phenolic compounds. The reduction was related to the phenols' octanol–water partition coefficients ( K ow).
Conclusions:  The reduction in toxicity of the phenols can be explained by a combination of toxin accumulation in biosurfactant micelles and hydrophobic interactions of the phenols with rhamnolipid-based dissolved organic carbon.
Significance and Impact of the Study:  Results provide evidence that next to the effect of the micelle formation also hydrophobic interactions with rhamnolipid-based dissolved organic carbon affects the bioavailability of the phenols. Quantifying the effect of biosurfactants on the toxicity of hydrophobic compounds such as phenols thus appears to be a useful approach to assess their bioavailable equilibrium concentration.  相似文献   
117.
Cho YG  Rhee SK  Lee ST 《Biodegradation》2000,11(1):21-28
The effect of the presence of an alternate toxiccompound (phenol) on the p-nitrophenol(PNP)-degrading activity of freely suspended andcalcium alginate immobilized Nocardioides sp.NSP41 was investigated. In the single substrateexperiments, when the concentration of phenol and PNPwas increased to 1400 mg l-1 and 400 mg l-1,respectively, the initial cell concentrations in thefreely suspended cell culture should be higher than1.5 g dry cell weight l-1 for completedegradation. In the simultaneous degradationexperiment, when the initial concentration of phenolwas increased from 100 to 400 mg l-1, thespecific PNP degradation rate at the concentration of200 mg l-1 was decreased from 0.028 to 0.021h-1. A freely suspended cell culture with a highinitial cell concentration resulted in a highvolumetric degradation rate, suggesting the potentialuse of immobilized cells for simultaneous degradation.In the immobilized cell cultures, althoughsimultaneous degradation of PNP and phenol wasmaintained, the specific PNP and phenol degradationrate decreased. However, a high volumetric PNP andphenol degradation rate could be achieved byimmobilization because of the high cell concentration.Furthermore, when the immobilized cells were reused inthe simultaneous degradation of PNP and phenol, theydid not lose their PNP- and phenol-degrading activityfor 12 times in semi-continuous cultures. Takentogether, the use of immobilized Nocardioidessp. NSP41 for the simultaneous degradation of PNP andphenol at high concentrations is quite feasiblebecause of the high volumetric PNP and phenoldegradation rate and the reusability of immobilizedcells.  相似文献   
118.
The capacity of anaerobic granular sludge for oxidizing phenoland p-cresol under anaerobic conditions was studied. Phenol and p-cresolwere completely converted to methane when bicarbonate was the only terminal electron acceptor available. When the humic model compound, anthraquinone-2,6-disulfonate, was included as an alternative electron acceptor in the cultures, the oxidation of the phenolic compounds was coupled to the reduction of the model humic compound to its corresponding hydroquinone, anthrahydroquinone-2,6-disulfonate. These results demonstrate for the first time that the anaerobic degradation of phenolic compounds can be coupled to the reduction of quinones as terminal electron acceptor.  相似文献   
119.
The dissolved oxygen (DO) level is the key factor which decides the rate of degradation of the organic load in aerobic growth conditions. In this study the role of DO levels on the utilization of phenols has been reported using the continuous culture system. A phenol-utilizing strain, Pseudomonas CF600 has been used as a model. Its phenol-degrading capacity was studied using continuous cultivation for a period of 60 days. The bioreactor was kept at a dilution rate of 0.006 h–1 with DO levels maintained at 2, 3, and 4 ppm keeping all the other cultivation conditions constant. Physiological variations under the cultivation conditions were studied by monitoring off-line phenol utilization and respirometric analysis of harvested culture against different substrates. It was observed that the accumulation of 2-hydroxymuconate semialdehyde (HMS), an intermediate in the phenol degradation pathway, depends on the DO level. The maximum level of HMS in the medium observed was 3.92 M when DO was maintained at 2 ppm whereas with 3 ppm of DO, HMS level was below 0.4 M. Oxygen uptake data of the cells harvested from cultures grown at different DO levels showed that the uptake was highest at 3 ppm DO for all the substrates tried. When phenol was used as substrate, the oxygen uptake rate was 42.66, 66.36 and 35.55 nM/min/mg dry weight of cells at 4, 3 and 2 ppm DO respectively. Results show that DO levels influence the rate of phenol utilization in Pseudomonas CF600.  相似文献   
120.
A mixed microbial culture was entrapped into porous silica gel prepared by two different sol-gel methods. The immobilization of cells into prepolymerized tetraethoxysilane was more stressful to living microbial cells than the entrapment into colloidal SiO2. Our experimental equipment operating in a sensor mode was able to detect 0.5 mg phenol l–1 and had a linear response in the range from 2 to 10 mg phenol l–1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号