首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   126篇
  国内免费   714篇
  2024年   11篇
  2023年   53篇
  2022年   50篇
  2021年   76篇
  2020年   74篇
  2019年   96篇
  2018年   81篇
  2017年   89篇
  2016年   94篇
  2015年   69篇
  2014年   70篇
  2013年   127篇
  2012年   85篇
  2011年   112篇
  2010年   72篇
  2009年   85篇
  2008年   95篇
  2007年   102篇
  2006年   89篇
  2005年   79篇
  2004年   47篇
  2003年   45篇
  2002年   44篇
  2001年   39篇
  2000年   26篇
  1999年   21篇
  1998年   35篇
  1997年   29篇
  1996年   24篇
  1995年   15篇
  1994年   7篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   7篇
  1981年   1篇
排序方式: 共有1995条查询结果,搜索用时 15 毫秒
101.
Temperature, dissolved oxygen and dissolved methane profiles were measured during autumn and summer, in a shallow floodplain lake in south-eastern Australia to determine the effects of water-column stability on methane and oxygen dynamics. The water column was well mixed in autumn. Strong thermal stratification developed in the late afternoon in summer, with top-to-bottom temperature differences of up to 6 °C. Methane concentrations in surface waters varied over a daily cycle by an 18-fold range in summer, but only by a 2-fold range in autumn. The implication of short-term temporal variation is that static chambers deployed on the water surface for short times (less than a day) in summer will significantly underestimate the diffusive component of methane emissions across the water–atmosphere interface. There was a marked diel variation in dissolved oxygen concentrations in summer, with the highest oxygen values (commonly 5–8 mg l–1) occurring in the surface waters in late afternoon; the bottom waters were then devoid of oxygen (< 0.2 mg l–1). Because of high respiratory demands, even the surface water layers could be nearly anoxic by morning in summer. The concentration of dissolved oxygen in the surface waters was always less than the equilibrium value. When the water column became thermally stratified in summer, the dissolved oxygen and methane maxima were spatially separated, and planktonic methanotrophy would be limited to a moving zone, at variable depth, in the water column. In summer the whole-wetland rates of oxygen production and respiration, calculated from long-term (5 h) shifts in dissolved oxygen concentrations over a diel period, were approximately 6–10 and 3–6 mmol m–3 h–1, respectively. These values correspond to net and gross primary production rates of 0.7–1.2 and 1.0–1.9 g C m–3 day–1, respectively.  相似文献   
102.
  • 1 In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998–1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass.
  • 2 In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8–6.2 mol m?2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above‐ground plant biomass, had a net CO2 loss of 1.1–7.1 mol m?2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment.
  • 3 Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes.
  相似文献   
103.
AIMS: With concern surrounding the environmental impact of chemical tracers on the aquatic environment, this paper presents the initial evaluation of biotracers used to determine the effluent retention time, an important performance indicator, in a Free Water Surface Constructed Wetland. METHODS AND RESULTS: Production of the biotracers, coliphage MS2, and the bacteriophage of Enterobacter cloacae and antibiotic resistant endospores of Bacillus globigii is described in detail. Their subsequent use in three separate tracer experiments - January, March and June (2000) - revealed the variability of retention time with respect to effluent flow. The biotracer MS2 showed the constructed wetland had a retention time of 8-9 h at a mean discharge of 0.9 l s-1, increasing to 10-12 h at a mean discharge 0.3 l s-1. A similar retention of 9-10 h at a mean discharge of 0.3 l s-1 was calculated for the Ent. cloacae phage. In contrast, use of endospores revealed considerably longer retention times at these mean discharge rates; 12-24 h and 36-48 h, respectively. CONCLUSION: Biotracers could provide a useful and environmentally friendly technique to monitor effluent retention in constructed wetlands. At this stage the phage tracers appear particularly promising due to ease of isolation and recovery. SIGNIFICANCE AND IMPACT OF THE STUDY: Initial results are encouraging and have highlighted the potential of biotracers as alternatives to chemical tracers, even in microbially-rich waters.  相似文献   
104.
In many wetland species, root aerenchyma is produced by the predictable collapse of root cortex cells, indicating a programmed cell death (PCD). The objective of this study was to characterize the cellular changes that accompany this PCD in the marsh species Sagittaria lancifolia. Structural changes in membranes and organelles were examined during development of root cortex cells to compare with previous examples of PCD. The organization of cortical microtubule (CMT) arrays in root cells from S. lancifolia was also evaluated as a possible predictor of cell lysis. Nuclear fragmentation and condensation were the earliest changes observed in cells undergoing lysis. Breakdown of the tonoplast and other organelles and disruption of the plasma membrane followed. After loss of cytoplasm, cells collapsed to form gas spaces. These results were compared to collapse of root cortical cells of Zea mays and Oryza sativa during aerenchyma development. Changes in the appearance of the cytoplasm of all three species were similar at later stages of aerenchyma development. The relative timing of disintegration of the tonoplast and middle lamella appeared to differ among the three species. Changes in the organization of CMT arrays did not appear to be a predictor of PCD in S. lancifolia. Aerenchyma production in plants involves a type of PCD that is morphologically distinct from PCD described from many animals.  相似文献   
105.
Ski slope vegetation at Snoqualmie Pass in Washington State, USA, was surveyed in order to identify community types and to compare it with vegetation development patterns in Japan. Ski slopes in Japan, most of which were constructed after 1960, underwent heavy land recontouring, while those at Snoqualmie Pass were constructed before 1950 with less modification. Three points apply to Japanese ski slope vegetation and differentiate these slopes from those at Snoqualmie Pass: (i) grasslands of introduced species are widespread and persistent; (ii) unvegetated patches are uncommon; and (iii) wetland vegetation has developed. These differences are mainly derived from the intensity of human impact, history of the slope and its scale: namely, ski slopes in Washington are older and larger than those in Japan. Ski slope vegetation in Washington was primarily differentiated by a soil moisture gradient. The large size of Washington ski slopes permitted the inclusion and development of wetland habitats, whereas most ski slopes in Japan are constructed on ridges and do not contain wetlands. Most introduced species in Japan are eliminated soon after seeding. In contrast, the long-term management of ski slopes decreased soil erosion and/or unvegetated patches in Washington and created relatively permanent grasslands composed of introduced species. Tsuga heterophylla and Abies amabilis were found established on the ski slopes in Washington, whereas in Japan the pioneer tree species are shade-intolerant broadleaved species. These differences may be a result of the different disturbance histories of ski slopes in the two countries. In addition, along with the conifers, early successional forbs such as Anaphalis margaritacea and Epilobium angustifolium are well established on Washington ski slopes. Results show that disturbances created by ski slope development greatly affect the vegetation, even on older, less heavily impacted ski slopes.  相似文献   
106.
A portion of the former Lake Hula wetland (northern Israel) was re-flooded in spring 1994 and the physical, chemical and biological developments within the resulting new lake and wetland complex (Agmon) was followed closely by a multi-disciplinary scientific team. The first three years of study relating to Lake Agmon are reported in this issue of Wetlands Ecology & Management. We provide in this paper a general background on the Lake Hula Draining Project in the 1950s and the recent re-flooding and creation of the Agmon wetland.  相似文献   
107.
During the early 1900s, more than 90% of the surface area of Cootes Paradise Marsh was covered with emergent vegetation; currently, less than 15% of the surface is covered with aquatic vegetation and the remainder is wind-swept, turbid, open water. The loss of emergent cover is significantly correlated with mean annual water levels that increased more than 1.5 m over the past 60 years. Species diversity and the percent cover of the submerged macrophtye community also declined dramatically after the 1940s, coincident with decreased water clarity and increased nutrients from pollution by sewage and stormwater effluent. Phosphorus levels in the marsh dropped ten-fold after the sewage plant was upgraded to a tertiary-treatment facility in 1978; however, there was no measurable improvement in water clarity, in spite of a decrease in chlorophyll concentrations. Long-term changes in the composition of the planktonic, benthic and fish communities accompanied changes in water clarity, nutrient status and macrophyte cover. Phytoplankton changed from a community dominated by diverse taxa of green algae and diatoms during the 1940s, to a less diverse community dominated by a few taxa of green and blue-green algae in the 1970s, then to a much more diverse community recently, including many taxa of green algae, diatoms and chrysophytes; however, because water turbidity continues to be high, and algae tolerant of low light levels are now very abundant. Daphnia, which were prominent during the 1940s (especially in the vegetated sites) were replaced in the 1970s by smaller zooplankton such as the cladoceran, Bosmina, and several rotifer species including Brachionus, Asplanchna and Keratella. In the recent survey conducted in 1993 and 1994, small-bodied forms still dominate the turbid open-water areas, while medium-sized cladocerans such as Moina were common near macrophyte beds. Generally, total herbivorous zooplankton biomass tended to be highest next to Typha beds and declined with increasing distance from the plants. Conversely, biomass of edible algae at these sites increased with distance from the macrophytes. Species diversity of aquatic insects declined dramatically over the past 40 years, from 57 genera (23 families and 6 orders) in 1948, to 9 genera (6 families and 3 orders) in 1978, to only 5 genera (3 families and 2 orders) in 1995. The diverse benthic community present 5 decades ago has now been replaced by a community consisting primarily of chironomid larvae, oligochaetes and other worms associated with low-oxygen environments. These successional changes illustrate the impact of natural (fluctuating water levels) and anthropogenic (deterioration in water quality) stressors on the character of the biotic communities, and reveal the complex interactions among the various trophic levels and the abiotic environment as degradation and remediation proceeded.  相似文献   
108.
The acceptance of poorly tested hypotheses has adverse scientific consequences, and may have adverse ecological and social consequences. The hypothesis that purple loosestrife (Lythrum salicaria) has deleterious effects on North American wetlands is an example. We traced the history of purple loosestrife and its control in North America and found little scientific evidence consistent with the hypothesis that purple loosestrife has deleterious effects. The most commonly cited study of the effects of purple loosestrife on native flora and fauna produced inconclusive results. The general acceptance of this hypothesis, however, has resulted in the introduction of nonindigenous insects for biological control. Efforts to control purple loosestrife may be misplayed and may have long-term ecological consequences if loosestrife does not have the impact it is believed to have. The acceptance of this hypothesis using scientific justifications may affect future scientific credibil ity. Careful evaluation of the precautionary principle is necessary when considering the control of nonindigenous organisms.  相似文献   
109.
1. Wetland insect predators can structure aquatic prey communities via selective predation, but receive considerably less attention than vertebrate predators. We conducted laboratory experiments to test selective predation by two species of larval dytiscid beetles ( Agabus ; Coleoptera: Dytiscidae) and the potential contribution of these beetles to suppression of mosquito populations in constructed wetlands.
2.  Agabus consumed copepods, ostracods and mosquito larvae in no-choice tests. When offered a choice, 76% of all prey consumed were mosquito larvae, indicating selective predation. Subsequent experiments revealed this preference was due to ease of capture of mosquito larvae over alternative prey.
3. Cannibalism and intraguild predation were common within and between species of Agabus , which may reduce the overall impact of the observed selective predation.
4.  Agabus larvae selectively preyed on mosquito larvae over alternative prey, which is not characteristic of some fish used as biological control agents for mosquitoes. Predator exclusion or similar experiments in the field could document how these results translate into a natural setting.
5. The findings of this study suggest developing mosquito suppression strategies focused on conservation of native wetland predators. These strategies are preferable to introducing non-native generalist predators, or applying pesticides.  相似文献   
110.
高原湿地湖滨带植物对气候变暖表现出强烈的功能响应,是全球气候变化的主要现象之一。植物解剖性状直接关系到植物的生态功能,为探讨气候变暖对湿地植物茎解剖结构的影响,该研究利用开顶式生长室分析了模拟增温对滇西北纳帕海湿地湖滨带挺水植物茭草茎解剖结构的影响。结果表明:(1)茭草地上茎在增温4 ℃的范围内,主要通过增加表皮结构厚度以增加表皮失水来响应增温; 地下茎在增温2 ℃的轻度增温条件下与地上茎的响应策略相同,而在增温4 ℃时主要通过减小维管结构大小以降低气穴化风险来响应增温。(2)年最高温度和夜间积温是影响茭草茎解剖结构性状的关键因子,但该两个温度因子仅对地下茎筛管大小的影响达到显著水平(R2=0.838, P<0.01)。(3)内表皮细胞厚度是地上茎响应增温的最主要性状,并与温度因子呈显著正相关。地下茎导管和筛管大小是地下茎响应温度升高的主要性状,二者与温度变量呈负相关关系。综上表明,茭草地上茎和地下茎对增温响应策略存在差异,为揭示高原湿地植物应对气候变暖的响应规律以及生态适应策略提供了科学依据。基于当前气候变暖的背景,建议未来采用更科学的实验方法对更多高原湿地植物的生态响应过程及规律进一步深入研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号