首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5409篇
  免费   327篇
  国内免费   370篇
  6106篇
  2024年   9篇
  2023年   90篇
  2022年   95篇
  2021年   123篇
  2020年   176篇
  2019年   163篇
  2018年   144篇
  2017年   125篇
  2016年   170篇
  2015年   178篇
  2014年   208篇
  2013年   435篇
  2012年   163篇
  2011年   228篇
  2010年   185篇
  2009年   253篇
  2008年   234篇
  2007年   268篇
  2006年   252篇
  2005年   208篇
  2004年   205篇
  2003年   203篇
  2002年   185篇
  2001年   136篇
  2000年   113篇
  1999年   119篇
  1998年   112篇
  1997年   100篇
  1996年   106篇
  1995年   120篇
  1994年   98篇
  1993年   115篇
  1992年   100篇
  1991年   75篇
  1990年   66篇
  1989年   96篇
  1988年   46篇
  1987年   55篇
  1986年   39篇
  1985年   53篇
  1984年   37篇
  1983年   34篇
  1982年   44篇
  1981年   30篇
  1980年   20篇
  1979年   20篇
  1978年   28篇
  1977年   16篇
  1976年   10篇
  1973年   8篇
排序方式: 共有6106条查询结果,搜索用时 15 毫秒
101.
The nitrilase superfamily enzymes from Pyrococcus abyssi and Pyrococcus horikoshii hydrolyze several different amides. No nitriles that we tested were hydrolyzed by either enzyme. Propionamide and acetamide were the most rapidly hydrolyzed of all the substrates tested. Amide substrate docking studies on the wild-type and C146A variant P. horikoshii enzymes suggest a sequence in which the incoming amide substrate initially hydrogen bonds to the amino group of Lys-113 and the backbone carbonyl of Asn-171. When steric hindrance is relieved by replacing the cysteine with alanine, the amide then docks such that the amino group of Lys-113 and the backbone amide of Phe-147 are hydrogen-bonded to the substrate carbonyl oxygen, while the backbone carbonyl oxygen of Asn-171 and the carboxyl oxygen of Glu-42 are hydrogen-bonded to the amino group of the substrate. Here, we confirm the location of the acetamide and glutaramide ligands experimentally in well-resolved crystal structures of the C146A mutant of the enzyme from P. horikoshii. This ligand location suggests that there is no direct interaction between the substrate amide and the other active site glutamate, Glu-120, and supports an active-site geometry leading to the formation of the thioester intermediate via an attack on the si-face of the amide by the sulfhydryl of the active site cysteine.  相似文献   
102.
A study was made of the interaction of 8-oxoguanine-DNA glycosylases of Escherichia coli (Fpg) and human (OGG1), as well as apurinic/apyrimidinic endonucleases of yeast (Apn1) and E. coli (Nfo), with oligodeoxyribonucleotides containing 8-oxoguaine (oxoG) and tetrahydrofuran (F, a stable analog of an apurinic site) separated by various numbers of nucleotides. Inhibitor analysis showed that the affinity of Fgp for single-stranded DNA ligands is virtually independent of the relative positions of oxoG and F. K M and k cat were determined for all the four enzymes and all double-stranded substrates studied. The effect of the second lesion strongly depended both on the relative position of the lesion and the enzyme of interest. The highest drop in the affinity of Fpg and OGG1 for the substrate (1.6-to 148-fold) and in the reaction rate (4.8-to 58-fold) was recorded for the oligonucleotides in which F was immediately 3′ or 5′ of oxoG. Introduction of the second lesion barely affected K M for nucleases Apn1 and Nfo. The reaction rate was five-to tenfold lower for the substrates containing two adjacent lesions. For all enzymes studied, an increase in the distance between two lesions in double-stranded DNA decreased their contribution to K M and k cat.  相似文献   
103.
The effect of excessive Cd on the growth and metal uptake by leafy vegetables Brassica chinensis L. (cv. Wuyueman) and Brassica pekinensis (Lour.) Rupr. (cv. Qingyan 87-114) were studied in hydroponic solution culture. The Cd concentration higher than 10 μM significantly decreased the root elongation and leaf chlorophyll contents of both plant species. The shoots of B. pekinensis had significantly higher concentrations of total and water-soluble Cd than B. chinensis. The roots of both species accumulated more Cd than the shoots in all the Cd treatments. Most of the Cd in the roots was found in the cell walls. The shoot/root ratio of Cd concentrations in B. pekinensis was always greater than that in B. chinensis. But, the concentration and proportion of Cd in the cell walls in B. chinensis were higher than that in B. pekinensis. Cadmium treatments also increased the concentrations of total non-protein thiols (NPT) in the shoots of the both species. A significant correlation was found between the concentrations of soluble Cd and NPT in plant shoots.  相似文献   
104.
This study investigated the potential adverse effects of tert-butyl acetate (TBAc) on maternal toxicity and embryo-fetal development after maternal exposure of pregnant rats from gestational days 6 through 19. TBAc was administered to pregnant rats by gavage at 0, 400, 800, and 1,600 mg/kg/day. All dams were subjected to a Caesarean section on day 20 of gestation, and their fetuses were examined for any morphological abnormalities. At 1,600 mg/kg, maternal toxicity manifested as increases in the incidence of clinical signs and death, lower body weight gain and food intake, increases in the weights of adrenal glands and liver, and a decrease in thymus weight. Developmental toxicity included a decrease in fetal weight, an increase in the incidence of skeletal variation, and a delay in fetal ossification. At 800 mg/kg, only a minimal developmental toxicity, including an increase in the incidence of skeletal variation and a delay in fetal ossification, were observed. In contrast, no adverse maternal or developmental effects were observed at 400 mg/kg. These results show that a 14-day repeated oral dose of TBAc is embryotoxic at a maternally toxic dose (i.e., 1,600 mg/kg/day) and is minimally embryotoxic at a nonmaternally toxic dose (i.e., 800 mg/kg/day) in rats. However, no evidence for the teratogenicity of TBAc was noted in rats. It is concluded that the developmental findings observed in the present study are secondary effects to maternal toxicity. Under these experimental conditions, the no-observed-adverse-effect level of TBAc is considered to be 800 mg/kg/day for dams and 400 mg/kg/day for embryo-fetal development.  相似文献   
105.
Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death ) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways.  相似文献   
106.
The toxic conditions of Oxisol soils attributed to oranging symptoms of rice grown in the Sitiung Transmigration area, Sumatra, Indonesia were evaluated in the laboratory. Changes of pH and Eh of flooded soils, and concentrations of nutrients in the soils and in the rice plants were measured. The soils were clayey, kaolinitic, isohyperthermic, Typic Haplorthox. It was found that Eh of the soils sharply decreased from an average value of +460 ± 150 mV to –217 ± 15 mV following 60 days of flooding (DF). During the same period of flooding, soil pH increased from an average value of 5.2 ± 0.6 to 6.6 ± 0.2. Concentrations of NaOAc extractable Fe, Mn, Zn, Cu, Mo, Ca, Mg, P, and K, but not Al, increased markedly whereas their water-soluble form, except Fe, decreased slightly following 60 DF. Leaf tissue analyses indicated that 13, 51 and 58% of the rice plant samples contained potentially toxic level of Mn, Fe and Al, respectively, as their contents were higher than the assumed threshold toxicity levels of 2500, 300, and 300 mg kg–1. Thirteen, 16, 2, and 3% of the leaf tissue also contained potentially deficient levels of P, K, Ca, and Mg, respectively. The oranging symptom in the rice leaf tissue appeared to be due to indirect toxicity of Fe, Mn, and Al, i.e., Fe-induced, Mn-induced, and Al-induced deficiency of P, K, Ca and Mg. As a result of the relatively high concentrations of NaOAc extractable Fe, Mn, and Al in the soil solution, root growth was limited and coated with iron and manganese oxides thereby reducing the root's capacity to absorb nutrients from the soils.The work was supported by USAID Grant No. DPE-5542-G-SS-4055-00 (3.F-10). Contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511, USA.  相似文献   
107.
108.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C\-3\|41总DNA中35Kb HindIII片段上带有419和514kD二元毒素基因,该片段由3479个核苷酸组成,核苷酸序列同2362菌株的二元毒素基因序列完全相同。含二元毒素基因的重组质粒pCW\|1和pCW\|2能在大肠杆菌中表达产生二元毒蛋白,但表达量低,重组子杀蚊毒性低。无晶体型苏云金芽孢杆菌以色列亚种重组子在其芽孢形成中能产生以晶体形式存在的二元毒素蛋白,其全发酵液和纯化晶体蛋白的杀蚊活性与C\-3\|41相近。  相似文献   
109.
We examined the enzymatic function of recombinant CYP2C19 in enantiomeric hexobarbital (HB) 3'-hydroxylation, and searched the roles of amino acid residues, such as Phe-100, Phe-114, Asp-293, Glu-300, and Phe-476 of CYP2C19 in the stereoselective HB 3'-hydroxylation, using a yeast cell expression system and site-directed mutagenesis method. CYP2C19 wild-type exerted substrate enantioselectivity of (R)-HB>(S)-HB and metabolite diastereoselectivity of 3'(R)<3'(S) in 3'-hydroxylation of HB enantiomers. The substitution of Asp-293 by alanine failed to yield an observable peak at 450 nm in its reduced carbon monoxide-difference spectrum. CYP2C19-E300A and CYP2C19-E300V with alanine and valine, respectively, in place of Glu-300 exerted total HB 3'-hydroxylation activities of 45 and 108%, respectively, that of the wild-type. Interestingly, these two mutants showed substrate enantioselectivity of (R)-HB<(S)-HB, which is opposite to that of the wild-type, while metabolite diasteroselectivity remained unchanged. The replacement of Phe-476 by alanine increased total HB 3'-hydroxylation activity to approximately 3-fold that of the wild-type. Particularly, 3'(S)-OH-(S)-HB-forming activity elevated to 7-fold that of the wild-type, resulting in the reversal of the substrate enantioselectivity. In contrast, the substitution of phenylalanine at positions 100 and 114 by alanine did not produce a remarkable change in the total activity or the substrate enantioselectivity. These results indicate that Glu-300 and Phe-476 are important in stereoselective oxidation of HB enantiomers by CYP2C19.  相似文献   
110.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号