首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10923篇
  免费   1206篇
  国内免费   248篇
  2024年   18篇
  2023年   225篇
  2022年   211篇
  2021年   339篇
  2020年   425篇
  2019年   489篇
  2018年   455篇
  2017年   395篇
  2016年   379篇
  2015年   444篇
  2014年   533篇
  2013年   751篇
  2012年   350篇
  2011年   478篇
  2010年   378篇
  2009年   544篇
  2008年   585篇
  2007年   500篇
  2006年   555篇
  2005年   493篇
  2004年   447篇
  2003年   409篇
  2002年   345篇
  2001年   223篇
  2000年   219篇
  1999年   226篇
  1998年   210篇
  1997年   191篇
  1996年   177篇
  1995年   140篇
  1994年   134篇
  1993年   131篇
  1992年   128篇
  1991年   106篇
  1990年   88篇
  1989年   91篇
  1988年   74篇
  1987年   69篇
  1986年   55篇
  1985年   74篇
  1984年   59篇
  1983年   35篇
  1982年   49篇
  1981年   34篇
  1980年   26篇
  1979年   27篇
  1978年   14篇
  1977年   14篇
  1976年   12篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Self‐association of proteins can be triggered by a change in the distribution of the conformational ensemble. Posttranslational modification, such as phosphorylation, can induce a shift in the ensemble of conformations. In the brain of Alzheimer's disease patients, the formation of intra‐cellular neurofibrillary tangles deposition is a result of self‐aggregation of hyper‐phosphorylated tau protein. Biochemical and NMR studies suggest that the cis peptidyl prolyl conformation of a phosphorylated threonine‐proline motif in the tau protein renders tau more prone to aggregation than the trans isomer. However, little is known about the role of peptidyl prolyl cis/trans isomerization in tau aggregation. Here, we show that intra‐molecular electrostatic interactions are better formed in the trans isomer. We explore the conformational landscape of the tau segment containing the phosphorylated‐Thr231‐Pro232 motif using accelerated molecular dynamics and show that intra‐molecular electrostatic interactions are coupled to the isomeric state of the peptidyl prolyl bond. Our results suggest that the loss of intra‐molecular interactions and the more restricted conformational ensemble of the cis isomer could favor self‐aggregation. The results are consistent with experiments, providing valuable complementary atomistic insights and a hypothetical model for isomer specific aggregation of the tau protein. Proteins 2015; 83:436–444. © 2014 Wiley Periodicals, Inc.  相似文献   
992.
Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease‐associated non‐synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site‐specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues at interfaces have lower average dfi (31%) than those present at non‐interfaces (50%), which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites with disease‐associated nsSNVs have significantly lower average dfi (23%) as compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome‐wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease. Proteins 2015; 83:428–435. © 2014 Wiley Periodicals, Inc.  相似文献   
993.
Mutations at protein–protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical values, yielding mean energies of ?48 cal mol?1 Å?2 for interactions between hydrophobic surfaces, ?51 to ?80 cal mol?1 Å?2 for surfaces of complementary charge, and 66–83 cal mol?1 Å?2 for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at ?24 cal mol?1 Å?2. Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid‐body interactions (r = 0.66). When used to rerank docking poses, it can place near‐native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50–95% of the cohesive energy. The model is available open‐source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/ . Proteins 2015; 83:640–650. © 2015 Wiley Periodicals, Inc.  相似文献   
994.
Sidechain rotamer libraries are obtained through exhaustive statistical analysis of existing crystallographic structures of proteins and have been applied in multiple aspects of structural biology, for example, crystallography of relatively low‐resolution structures, in homology model building and in biomolecular NMR. Little is known, however, about the driving forces that lead to the preference or suitability of one rotamer over another. Construction of 3D hydropathic interaction maps for nearly 30,000 tyrosines reveals the environment around each, in terms of hydrophobic (π–π stacking, etc.) and polar (hydrogen bonding, etc.) interactions. After partitioning the tyrosines into backbone‐dependent (?, ψ) bins, a map similarity metric based on the correlation coefficient was applied to each map‐map pair to build matrices suitable for clustering with k‐means. The first bin (?200° ≤ ? < –155°; ?205° ≤ ψ < –160°), representing 631 tyrosines, reduced to 14 unique hydropathic environments, with most diversity arising from favorable hydrophobic interactions with many different residue partner types. Polar interactions for tyrosine include surprisingly ubiquitous hydrogen bonding with the phenolic OH and a handful of unique environments surrounding the tyrosine backbone. The memberships of all but one of the 14 environments are dominated (>50%) by a single χ1/χ2 rotamer. The last environment has weak or no interactions with the tyrosine ring and its χ1/χ2 rotamer is indeterminate, which is consistent with it being composed of mostly surface residues. Each tyrosine residue attempts to fulfill its hydropathic valence and thus, structural water molecules are seen in a variety of roles throughout protein structure. Proteins 2015; 83:1118–1136. © 2015 Wiley Periodicals, Inc.  相似文献   
995.
Galectins are β‐galactoside binding proteins which have the ability to serve as potent antitumor, cancer biomarker, and induce tumor cell apoptosis. Agrocybe cylindracea galectin (ACG) is a fungal galectin which specifically recognizes α(2,3)‐linked sialyllactose at the cell surface that plays extensive roles in the biological recognition processes. To investigate the change in glycan‐binding specificity upon mutations, single point and double point site‐directed in silico mutations are performed at the binding pocket of ACG. Molecular dynamics (MD) simulation studies are carried out for the wild‐type (ACG) and single point (ACG1) and double point (ACG2) mutated ACGs to investigate the dynamics of substituted mutants and their interactions with the receptor sialyllactose. Plausible binding modes are proposed for galectin–sialylglycan complexes based on the analysis of hydrogen bonding interactions, total pair‐wise interaction energy between the interacting binding site residues and sialyllactose and binding free energy of the complexes using molecular mechanics–Poisson–Boltzmann surface area. Our result shows that high contribution to the binding in different modes is due to the direct and water‐mediated hydrogen bonds. The binding specificity of double point mutant Y59R/N140Q of ACG2 is found to be high, and it has 26 direct and water‐mediated hydrogen bonds with a relatively low‐binding free energy of −47.52 ± 5.2 kcal/mol. We also observe that the substituted mutant Arg59 is crucial for glycan‐binding and for the preference of α(2,3)‐linked sialyllactose at the binding pocket of ACG2 galectin. When compared with the wild‐type and single point mutant, the double point mutant exhibits enhanced affinity towards α(2,3)‐linked sialyllactose, which can be effectively used as a model for biological cell marker in cancer therapeutics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
996.
Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology.  相似文献   
997.
998.
The gut microbiota is vital to host health and, as such, it is important to elucidate the mechanisms altering its composition and diversity. Intestinal helminths are host immunomodulators and have evolved both temporally and spatially in close association with the gut microbiota, resulting in potential mechanistic interplay. Host–helminth and host–microbiota interactions are comparatively well-examined, unlike microbiota–helminth relationships, which typically focus on experimental infection with a single helminth species in laboratory animals. Here, in addition to a review of the literature on helminth–microbiota interactions, we examined empirically the association between microbiota diversity and composition and natural infection of multiple helminth species in wild mice (Apodemus flavicollis), using 16S rRNA gene catalogues (metataxonomics). In general, helminth presence is linked with high microbiota diversity, which may confer health benefits to the host. Within our wild rodent system variation in the composition and abundance of gut microbial taxa associated with helminths was specific to each helminth species and occurred both up- and downstream of a given helminth''s niche (gut position). The most pronounced helminth–microbiota association was between the presence of tapeworms in the small intestine and increased S24–7 (Bacteroidetes) family in the stomach. Helminths clearly have the potential to alter gut homeostasis. Free-living rodents with a diverse helminth community offer a useful model system that enables both correlative (this study) and manipulative inference to elucidate helminth–microbiota interactions.  相似文献   
999.
How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence.  相似文献   
1000.
Geographical heterogeneity in the composition of biotic interactions can create a mosaic of selection regimes that may drive the differentiation of phenotypes that operate at the interface of these interactions. Nonetheless, little is known about effects of these geographical mosaics on the evolution of genes encoding traits associated with species interactions. Predatory marine snails of the family Conidae use venom, a cocktail of conotoxins, to capture prey. We characterized patterns of geographical variation at five conotoxin genes of a vermivorous species, Conus ebraeus, at Hawaii, Guam and American Samoa, and evaluated how these patterns of variation are associated with geographical heterogeneity in prey utilization. All populations show distinct patterns of prey utilization. Three ‘highly polymorphic’ conotoxin genes showed significant geographical differences in allelic frequency, and appear to be affected by different modes of selection among populations. Two genes exhibited low levels of diversity and a general lack of differentiation among populations. Levels of diversity of ‘highly polymorphic’ genes exhibit a positive relationship with dietary breadth. The different patterns of evolution exhibited by conotoxin genes suggest that these genes play different roles in prey capture, and that some genes are more greatly affected by differences in predator–prey interactions than others. Moreover, differences in dietary breadth appear to have a greater influence on the differentiation of venoms than differences in the species of prey.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号