首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3430篇
  免费   243篇
  国内免费   402篇
  2023年   60篇
  2022年   49篇
  2021年   85篇
  2020年   102篇
  2019年   121篇
  2018年   102篇
  2017年   95篇
  2016年   112篇
  2015年   118篇
  2014年   141篇
  2013年   283篇
  2012年   127篇
  2011年   179篇
  2010年   139篇
  2009年   182篇
  2008年   183篇
  2007年   181篇
  2006年   184篇
  2005年   164篇
  2004年   156篇
  2003年   125篇
  2002年   127篇
  2001年   103篇
  2000年   90篇
  1999年   75篇
  1998年   67篇
  1997年   50篇
  1996年   61篇
  1995年   48篇
  1994年   55篇
  1993年   78篇
  1992年   42篇
  1991年   47篇
  1990年   39篇
  1989年   27篇
  1988年   19篇
  1987年   27篇
  1986年   16篇
  1985年   27篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   17篇
  1980年   15篇
  1979年   14篇
  1978年   15篇
  1977年   11篇
  1976年   10篇
  1974年   9篇
  1973年   10篇
排序方式: 共有4075条查询结果,搜索用时 390 毫秒
211.
The addition of a carbon nutrient feed to a fed-batch cultivation is often not enough to obtain satisfactory growth and/or production. In some cases, an additional feed with for example supplementary amino acids or complex media is required. This work presents the development of feeding strategies where more than one feed is required and the knowledge of the growth requirements is low. Simulations and cultivations with E. coli are shown using the proposed feed controllers which are based on a probing control concept. The strategies work well and they can be used to shorten the process development phase considerably.  相似文献   
212.
213.
新型产甲烷古菌研究进展   总被引:9,自引:4,他引:5  
产甲烷古菌是一类能利用简单化合物产生甲烷气体的厌氧菌。近年来,随着测序技术的不断发展,科学家结合宏基因组学和其他技术先后发现了众多之前未被报道的新型产甲烷古菌。基因组分析等研究发现这几类新型产甲烷古菌具有独特的甲烷代谢通路以及广泛的生态分布,科学家推测它们在全球生态调节以及碳循环中可能起到了不可忽视的作用。然而,这些新型产甲烷古菌大部分尚未通过传统培养方法获得纯培养菌株,其确切的生理代谢机制和生态功能还有待深入研究。为了更加系统地了解这些新型产甲烷古菌,本文从它们的分类、系统发育地位、代谢机制、生态分布以及分离培养等方面进行了综述,并对新型产甲烷古菌未来的研究方向进行了展望。  相似文献   
214.
Photoautotrophic organisms are promising hosts for biocatalytic oxyfunctionalizations because they supply reduction equivalents as well as O2 via photosynthetic water oxidation. Thus far, research on photosynthesis-driven bioprocesses mainly focuses on strain development and the proof of principle in small-scale biocatalytic reaction setups. This study investigates the long-term applicability of the previously developed cyanobacterial strain Synechocystis sp. PCC 6803_BGT harboring the alkane monooxygenase system AlkBGT catalyzing terminal alkyl group oxyfunctionalization. For the regiospecific ω-hydroxylation of nonanoic acid methyl ester (NAME), this biocatalyst showed light intensity-independent hydroxylation activity and substantial hydrolysis of NAME to nonanoic acid. Substrate mass transfer limitation, substrate hydrolysis, as well as reactant toxicity were overcome via in situ substrate supply by means of a two-liquid phase system. The application of diisononyl phthalate as organic carrier solvent enabled 1.7-fold increased initial specific activities (5.6 ± 0.1 U/gCDW) and 7.6-fold increased specific yields on biomass (3.8 ± 0.1 mmolH-NAME/gCDW) as compared with single aqueous phase biotransformations. Finally, the whole-cell biotransformation system was successfully scaled from glass tubes to a stirred-tank photobioreactor. This is the first study reporting the application of the two-liquid phase concept for efficient phototrophic whole-cell biocatalysis.  相似文献   
215.
The stochasticity of Aspergillus oryzae (Trivially: the koji mold) pan-metabolomes commensurate with its ubiquitously distributed landscapes, i.e. growth matrices have been seemed uncharted since its food fermentative systems are mostly being investigated. In this review, we explicitly have discussed the likely tendencies of A. oryzae metabolomes pertaining to its growth milieu formulated with substrate matrices of varying nature, composition, texture, and associated physicochemical parameters. We envisaged typical food matrices, namely, meju, koji, and moromi as the semi-natural cultivation models toward delineating the metabolomic patterns of the koji mold, which synergistically influences the organoleptic and functional properties of the end products. Further, we highlighted how tailored conditions in sub-natural growth matrices, i.e. synthetic cultivation media blends, inducers, and growth surfaces, may influence A. oryzae metabolomes and targeted phenotypes. In general, the sequential or synchronous growth of A. oryzae on formulated matrices results in a number of metabolic tradeoffs with its immediate microenvironment influencing its adaptive and regulatory metabolomes. In broader context, evaluating the metabolic plasticity of A. oryzae relative to the tractable variables in formulated growth matrices might help approximate its growth and metabolism in the more complex natural matrices and environs. These approaches may considerably help in the design and manipulation of hybrid cultivation systems towards the efficient harnessing of commercial molds.  相似文献   
216.
217.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   
218.
AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can “pull” substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.  相似文献   
219.
Feeding experiments were conducted in situ in flow through boxes to determine the vulnerability of different prey types (the mayfly larvae Baetis, Ephemerella and Ecdyonurus spp., the caddisfly larva Hydropsyche spp. and the crustacean Gammarus spp.) to the predaceous water bug Aphelocheirus aestivalis and to estimate the predation impact of Aphelocheirus on prey populations. Experiments with equal densities of mixed prey and experiments where each prey was tested individually revealed that Baetis and Ephemerella were most vulnerable to Aphelocheirus predation: Hydropsyche, Ecdyonurus and Gammarus were little/not preyed upon. The present results suggest that vulnerability of prey depends mainly upon prey mobility and microhabitat overlap between predator and prey and that feeding behaviour of Aphelocheirus resembles more that of megalopterans than of stoneflies. Experiments with different prey densities (120–720 prey m−2) showed that the predation rate of Aphelocheirus increased with increasing prey density. Experiments with different substrates documented that mortality rates of prey decreased with increasing substrate complexity. When substrate conditions were complex mortality rates in the control and in the experimental boxes were the same which suggest little importance of Aphelocheirus predation on mayflies in the study site.  相似文献   
220.
Meteorological, physical and chemical parameters of Vellayani Lake, Kerala, India, have been analysed for twelve months (August 1980 to July 1981), the topography of the lake is described, and correlation coefficients were calculated between meteorological and hydrographical parameters. The results indicate that the lake can be converted into a productive aquafarm by means of slight manuring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号