首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1936篇
  免费   165篇
  国内免费   60篇
  2024年   6篇
  2023年   29篇
  2022年   19篇
  2021年   60篇
  2020年   58篇
  2019年   65篇
  2018年   54篇
  2017年   65篇
  2016年   62篇
  2015年   85篇
  2014年   98篇
  2013年   91篇
  2012年   62篇
  2011年   82篇
  2010年   65篇
  2009年   83篇
  2008年   81篇
  2007年   92篇
  2006年   77篇
  2005年   89篇
  2004年   57篇
  2003年   62篇
  2002年   62篇
  2001年   56篇
  2000年   49篇
  1999年   50篇
  1998年   49篇
  1997年   40篇
  1996年   43篇
  1995年   32篇
  1994年   32篇
  1993年   36篇
  1992年   41篇
  1991年   31篇
  1990年   19篇
  1989年   22篇
  1988年   21篇
  1987年   14篇
  1986年   29篇
  1985年   18篇
  1984年   10篇
  1983年   9篇
  1982年   8篇
  1981年   13篇
  1980年   7篇
  1979年   4篇
  1978年   10篇
  1976年   3篇
  1974年   3篇
  1972年   2篇
排序方式: 共有2161条查询结果,搜索用时 15 毫秒
81.
Developmental plasticity is often correlated with diversity and has been proposed as a facilitator of phenotypic novelty. Yet how a dimorphism arises or how additional morphs are added is not understood, and few systems provide experimental insight into the evolution of polyphenisms. Because plasticity correlates with structural diversity in Pristionchus nematodes, studies in this group can test the role of plasticity in facilitating novelty. Here, we describe three new species, Pristionchus fukushimae sp. nov. , Pristionchus hoplostomus sp. nov. , and the hermaphroditic Pristionchus triformis sp. nov. , which are characterized by a novel polymorphism in their mouthparts. In addition to showing the canonical mouth dimorphism of diplogastrid nematodes, comprising a stenostomatous (‘narrow‐mouthed’) and a eurystomatous (‘wide‐mouthed’) form, the new species exhibit forms with six, 12, or intermediate numbers of cheilostomatal plates. Correlated with this polymorphism is another trait that varies among species: whereas divisions between plates are complete in P. triformis sp. nov. , which is biased towards a novel ‘megastomatous’ form comprising 12 complete plates, the homologous divisions in the other new species are partial and of variable length. In a reconstruction of character evolution, a phylogeny inferred from 26 ribosomal protein genes and a partial small subunit rRNA gene supported the megastomatous form of P. triformis sp. nov. as the derived end of a series of split‐plate forms. Although split‐plate forms were normally only observed in eurystomatous nematodes, a single 12‐plated stenostomatous individual of P. hoplostomus sp. nov. was also observed, suggesting independence of the two types of mouth plasticity. By introducing these new species to the Pristionchus model system, this study provides further insight into the evolution of polymorphisms and their evolutionary intermediates. © 2013 The Linnean Society of London  相似文献   
82.
Phenotypic plasticity is central to the persistence of populations and a key element in the evolution of species and ecological interactions, but its mechanistic basis is poorly understood. This article examines the hypothesis that epigenetic variation caused by changes in DNA methylation are related to phenotypic plasticity in a heterophyllous tree producing two contrasting leaf types. The relationship between mammalian browsing and the production of prickly leaves was studied in a population of Ilex aquifolium (Aquifoliaceae). DNA methylation profiles of contiguous prickly and nonprickly leaves on heterophyllous branchlets were compared using a methylation‐sensitive amplified polymorphism (MSAP) method. Browsing and the production of prickly leaves were correlated across trees. Within heterophyllous branchlets, pairs of contiguous prickly and nonprickly leaves differed in genome‐wide DNA methylation. The mean per‐marker probability of methylation declined significantly from nonprickly to prickly leaves. Methylation differences between leaf types did not occur randomly across the genome, but affected predominantly certain specific markers. The results of this study, although correlative in nature, support the emerging three‐way link between herbivory, phenotypic plasticity and epigenetic changes in plants, and also contribute to the crystallization of the consensus that epigenetic variation can complement genetic variation as a source of phenotypic variation in natural plant populations. © 2012 The Linnean Society of London  相似文献   
83.
The evolution of exaggerated male traits is frequently driven by competition between males to control resources critical for female survival and/or reproductive success. For flightless arthropods specializing on patchy habitats, dispersal agents may represent one such critical resource. The Neotropical pseudoscorpion, Semeiochernes armiger, disperses to new habitats by attaching to the giant timber fly, Pantophthalmus tabaninus, as it ecloses from pupal boreholes within decaying Ficus trees. In a study that combined field observations of mating with experimental removal of individuals from a large, pre‐dispersal population, our morphometric analyses revealed that S. armiger is among the most highly sexually dimorphic pseudoscorpions known, with males possessing unusual, triangular‐shaped pedipalpal chelae (hands) and a male‐specific, dimorphic chela peg that exhibits threshold trait expression. Several lines of evidence indicate that extreme sexual dimorphism in S. armiger results from male competition to monopolize pantophthalmid bores as strategic sites for inseminating females on the verge of dispersal. Sexually dimorphic pedipalpal characters were significantly larger in males located in and around pantophthalmid boreholes, compared with males collected at the periphery of the pantophthalmid emergence zone. Removal of pseudoscorpions resulted in a significant decline in pedipalpal size of males associated with pantophthalmid bores, followed by a rebound in size after collected individuals were returned to the tree. Most significantly, field observations of mating indicate that this competition translates into intense selection for exaggerated male traits, with all traits of the sexually dimorphic chelae exhibiting highly significant sexual selection differentials in males. © 2013 The Linnean Society of London  相似文献   
84.
Three‐dimensional geometric morphometric techniques have been widely used in quantitative comparisons of craniofacial morphology in humans and nonhuman primates. However, few anatomical landmarks can actually be defined on the neurocranium. In this study, an alternative method is proposed for defining semi‐landmarks on neurocranial surfaces for use in detailed analysis of cranial shape. Specifically, midsagittal, nuchal, and temporal lines were approximated using Bezier curves and equally spaced points along each of the curves were defined as semi‐landmarks. The shortest paths connecting pairs of anatomical landmarks as well as semi‐landmarks were then calculated in order to represent the surface morphology between landmarks using equally spaced points along the paths. To evaluate the efficacy of this method, the previously outlined technique was used in morphological analysis of sexual dimorphism in modern Japanese crania. The study sample comprised 22 specimens that were used to generate 110 anatomical semi‐landmarks, which were used in geometric morphometric analysis. Although variations due to sexual dimorphism in human crania are very small, differences could be identified using the proposed landmark placement, which demonstrated the efficacy of the proposed method. Am J Phys Anthropol 151:658–666, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
85.
Understanding temporal variation in selection in natural populations is necessary to accurately estimate rates of divergence and macroevolutionary processes. Temporal variation in the strength and direction of selection on sex‐specific traits can also explain stasis in male and female phenotype and sexual dimorphism. I investigated changes in strength and form of viability selection (via predation by wasps) in a natural population of male and female tree crickets over 4 years. I found that although the source of viability stayed the same, viability selection affected males and females differently, and the strength, direction and form of selection varied considerably from year to year. In general, males experienced significant linear selection and significant selection differentials more frequently than females, and different male traits experienced significant linear selection each year. This yearly variation resulted in overall weak but significant convex selection on a composite male trait that mostly represented leg size and wing width. Significant selection on female phenotype was uncommon, but when it was detected, it was invariably nonlinear. Significant concave selection on traits representing female body size was observed in some years, as the largest and smallest females were preyed on less (the largest may have been too heavy for flying wasps to carry). Viability selection was significantly different between males and females in 2 of 4 years. Although viability selection via predation has the potential to drive phenotypic change and sexual dimorphism, temporal variation in selection may maintain stasis.  相似文献   
86.
87.
88.
Like the majority of Columbiformes, the Laughing Dove Spilopelia senegalensis is sexually monomorphic in plumage, but seems to be slightly dimorphic in size. However, due to the lack of studies little is known about the sexual size dimorphism in this species. In this work, we used morphometric data on a sample of 61 Laughing Doves from southern Tunisia, and sexed using a DNA-based method, to assess size differences between males and females and to determine a discriminant function useful for sex identification. The results showed that wing length was the most dimorphic trait, which could be due to the effects of sexual selection. The best function for the discrimination between sexes included wing length and head length, which is comparable with findings on other dove species. This discriminant function accurately classified 89% of birds, providing a rapid and accurate tool for sex identification in the studied population. Further data from different populations are needed for firmer conclusions about the extent of sexual size dimorphism and the reliability of the morphometric sexing approach in this dove species.  相似文献   
89.
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra‐ and intersex additive genetic (co)variances and sex‐specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex‐specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex‐specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross‐sex genetic correlation = ?0.003, 95% CI = ?0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex‐specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC.  相似文献   
90.
The evolutionary significance of widespread hypo‐allometric scaling of genital traits in combination with rapid interspecific genital trait divergence has been of key interest to evolutionary biologists for many years and remains poorly understood. Here, we provide a detailed assessment of quantitative genital trait variation in males and females of the sexually highly dimorphic and cannibalistic orb‐weaving spider Argiope aurantia. We then test how this trait variation relates to sperm transfer success. In particular, we test specific predictions of the one‐size‐fits‐all and lock‐and‐key hypotheses for the evolution of genital characters. We use video‐taped staged matings in a controlled environment with subsequent morphological microdissections and sperm count analyses. We find little support for the prediction of the one‐size‐fits‐all hypothesis for the evolution of hypo‐allometric scaling of genital traits, namely that intermediate trait dimensions confer highest sperm transfer success. Likewise, our findings do not support the prediction of the lock‐and‐key hypothesis that a tight fit of male and female genital traits mediates highest sperm transfer success. We do, however, detect directional effects of a number of male and female genital characters on sperm transfer, suggesting that genital trait dimensions are commonly under selection in nature. Importantly, even though females are much larger than males, spermatheca size limits the number of sperm transferred, contradicting a previous hypothesis about the evolutionary consequences of genital size dimorphism in extremely size‐dimorphic taxa. We also find strong positive effects of male body size and copulation duration on the probability of sperm transfer and the number of sperm transferred, with implications for the evolution of extreme sexual size dimorphism and sexual cannibalism in orb weavers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号