首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4207篇
  免费   547篇
  国内免费   302篇
  2024年   22篇
  2023年   152篇
  2022年   186篇
  2021年   210篇
  2020年   218篇
  2019年   219篇
  2018年   181篇
  2017年   162篇
  2016年   163篇
  2015年   176篇
  2014年   220篇
  2013年   333篇
  2012年   164篇
  2011年   190篇
  2010年   130篇
  2009年   208篇
  2008年   215篇
  2007年   193篇
  2006年   194篇
  2005年   234篇
  2004年   202篇
  2003年   152篇
  2002年   120篇
  2001年   75篇
  2000年   78篇
  1999年   53篇
  1998年   56篇
  1997年   47篇
  1996年   36篇
  1995年   33篇
  1994年   37篇
  1993年   30篇
  1992年   19篇
  1991年   18篇
  1990年   25篇
  1989年   19篇
  1988年   14篇
  1987年   23篇
  1986年   12篇
  1985年   32篇
  1984年   23篇
  1983年   17篇
  1982年   21篇
  1981年   24篇
  1980年   17篇
  1979年   18篇
  1978年   27篇
  1977年   23篇
  1976年   12篇
  1975年   13篇
排序方式: 共有5056条查询结果,搜索用时 171 毫秒
981.
982.
983.
miRNA biogenesis is a multistage process for the generation of a mature miRNA and involves several different proteins. In this work, we have carried out both sequence- and structure-based analysis for crucial proteins involved in miRNA biogenesis, namely Dicer, Drosha, Argonaute (Ago), and Exportin-5 to understand evolution of these proteins in animal kingdom and also to identify key sequence and structural features that are determinants of their function. Our analysis reveals that in animals the miRNA biogenesis pathway first originated in molluscs. The phylogeny of Dicer and Ago indicated evolution through gene duplication followed by sequence divergence that resulted in functional divergence. Our detailed structural analysis also revealed that RIIIDb domains of Drosha and Dicer, share significant similarity in sequence, structure, and substrate-binding pocket. On the other hand, PAZ domains of Dicer and Ago show only conservation of the substrate-binding pockets in the catalytic sites despite significant divergence in sequence and overall structure. Based on a comparative structural analysis of all four human Ago proteins (hAgo1–4) and their known biochemical activity, we have also attempted to identify key residues in Ago2 which are responsible for the unique slicer activity of hAgo2 among all isoforms. We have identified six key residues in N domain of hAgo2, which are located far away from the catalytic pocket, but might be playing a major role in slicer activity of hAgo2 protein because of their involvement in mRNA binding.  相似文献   
984.
One of the main barriers to accurate computational protein structure prediction is searching the vast space of protein conformations. Distance restraints or inter‐residue contacts have been used to reduce this search space, easing the discovery of the correct folded state. It has been suggested that about 1 contact for every 12 residues may be sufficient to predict structure at fold level accuracy. Here, we use coarse‐grained structure‐based models in conjunction with molecular dynamics simulations to examine this empirical prediction. We generate sparse contact maps for 15 proteins of varying sequence lengths and topologies and find that given perfect secondary‐structural information, a small fraction of the native contact map (5%‐10%) suffices to fold proteins to their correct native states. We also find that different sparse maps are not equivalent and we make several observations about the type of maps that are successful at such structure prediction. Long range contacts are found to encode more information than shorter range ones, especially for α and αβ‐proteins. However, this distinction reduces for β‐proteins. Choosing contacts that are a consensus from successful maps gives predictive sparse maps as does choosing contacts that are well spread out over the protein structure. Additionally, the folding of proteins can also be used to choose predictive sparse maps. Overall, we conclude that structure‐based models can be used to understand the efficacy of structure‐prediction restraints and could, in future, be tuned to include specific force‐field interactions, secondary structure errors and noise in the sparse maps.  相似文献   
985.
Membrane proteins are challenging to study and restraints for structure determination are typically sparse or of low resolution because the membrane environment that surrounds them leads to a variety of experimental challenges. When membrane protein structures are determined by different techniques in different environments, a natural question is “which structure is most biologically relevant?” Towards answering this question, we compiled a dataset of membrane proteins with known structures determined by both solution NMR and X‐ray crystallography. By investigating differences between the structures, we found that RMSDs between crystal and NMR structures are below 5 Å in the membrane region, NMR ensembles have a higher convergence in the membrane region, crystal structures typically have a straighter transmembrane region, have higher stereo‐chemical correctness, and are more tightly packed. After quantifying these differences, we used high‐resolution refinement of the NMR structures to mitigate them, which paves the way for identifying and improving the structural quality of membrane proteins.  相似文献   
986.
987.
Biological macromolecules often undergo large conformational rearrangements during a functional cycle. To simulate these structural transitions with full atomic detail typically demands extensive computational resources. Moreover, it is unclear how to incorporate, in a principled way, additional experimental information that could guide the structural transition. This article develops a probabilistic model for conformational transitions in biomolecules. The model can be viewed as a network of anharmonic springs that break, if the experimental data support the rupture of bonds. Hamiltonian Monte Carlo in internal coordinates is used to infer structural transitions from experimental data, thereby sampling large conformational transitions without distorting the structure. The model is benchmarked on a large set of conformational transitions. Moreover, we demonstrate the use of the probabilistic network model for integrative modeling of macromolecular complexes based on data from crosslinking followed by mass spectrometry.  相似文献   
988.
The coiled coil structural motif consists of alpha helices supercoiling around each other to form staggered knobs‐into‐holes packing. Such structures are deceptively simple, especially as they often can be described with parametric equations, but are known to exist in various conformations. Even the simplest systems, consisting of 2 monomers, can assemble into a wide range of states. They can form canonical as well as noncanonical coiled coils, be parallel or antiparallel, where helices associate with different degrees of shift, tilt, and rotation. Here, we investigate the energy landscape of heterodimeric coiled coils by carrying out de novo folding simulations starting from amino acid sequence. We folded a diverse set of 22 heterodimers and demonstrate that the approach is capable of identifying the atomic details in the experimental structure in the majority of cases. Our methodology also enables exploration of alternative states that can be accessible in solution beyond the experimentally determined structure. For many systems, we observe folding energy landscapes with multiple energy minima and several isoenergetic states. By comparing coiled coils from single domains and those extracted from larger proteins, we find that standalone coiled coils have deeper energy wells at the experimentally determined conformation. By folding the competing homodimeric states in addition to the heterodimers, we observe that the structural specificity towards the heteromeric state is often small. Taken together, our results demonstrate that de novo folding simulations can be a powerful tool to characterize structural specificity of coiled coils when coupled to assessment of energy landscapes.  相似文献   
989.
植物色素主要有花青素、类胡萝卜素和生物碱类色素三大类,其中花青素是决定大部分被子植物组织或器官颜色的重要色素。花青素通过类黄酮途径合成,该途径是生物学上研究较多且较为清楚的代谢途径之一。近年来的研究表明,在该途径中除了查尔酮合成酶(chalcone synthase,CHS)、查尔酮异构酶(chalcone isomerase,CHI)和黄烷酮-3-羟化酶(flavanone-3-hydrolase,F3H)起着关键作用外,二氢黄酮醇-4-还原酶(dihydroflavonol 4-reductase,DFR)对花青素的合成也至关重要。DFR可催化3种二氢黄酮醇和2种黄烷酮生成5种不同的花青素前体,且DFR基因家族不同成员对各个底物的催化效率不同,因此它在一定程度上决定着植物中花青素的种类和含量,从而影响植物组织或器官的颜色。该文对近年来国内外有关DFR在花青素合成过程中的生物学功能与调控,包括DFR的特征、作用机制和系统进化以及环境、转录因子和一些结构基因与DFR的关系等方面的研究进展进行了综述,以期为DFR今后的研究和利用基因工程改变植物组织或器官的颜色提供理论依据。  相似文献   
990.
为研究中国水仙类黄酮代谢调控网络,从中国水仙(Narcissus tazetta var.chinensis)中克隆得到一个R2R3-MYB基因,命名为NtMYB7(GenBank登录号:MF522208)。序列分析表明,NtMYB7基因cDNA开放阅读框(ORF)为753bp,编码250个氨基酸。氨基酸多重序列比对分析发现,NtMYB7含有R2和R3保守结构域,属于R2R3-MYB家族;系统进化树分析结果显示,NtMYB7与花青素合成抑制因子聚为一类。实时荧光定量PCR分析发现,NtMYB7基因在中国水仙不同时期花瓣和副冠以及不同器官中均有表达,且NtMYB7基因在鳞茎盘中表达量最高。瞬时表达分析发现,NtMYB7使花青素合成激活因子StMYB诱导产生的红色变浅;定量PCR分析表明,NtMYB7基因显著抑制烟草黄酮醇代谢分支FLS基因的表达,同时抑制StMYB激活的花青素和原花青素合成结构基因的表达。研究结果初步判断,NtMYB7基因是中国水仙类黄酮代谢途径的抑制因子。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号