首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3508篇
  免费   230篇
  国内免费   364篇
  2024年   9篇
  2023年   54篇
  2022年   72篇
  2021年   125篇
  2020年   124篇
  2019年   130篇
  2018年   104篇
  2017年   100篇
  2016年   119篇
  2015年   118篇
  2014年   194篇
  2013年   234篇
  2012年   153篇
  2011年   189篇
  2010年   149篇
  2009年   195篇
  2008年   173篇
  2007年   191篇
  2006年   201篇
  2005年   176篇
  2004年   137篇
  2003年   160篇
  2002年   132篇
  2001年   111篇
  2000年   88篇
  1999年   86篇
  1998年   73篇
  1997年   56篇
  1996年   55篇
  1995年   47篇
  1994年   36篇
  1993年   39篇
  1992年   44篇
  1991年   25篇
  1990年   21篇
  1989年   24篇
  1988年   20篇
  1987年   12篇
  1986年   14篇
  1985年   15篇
  1984年   16篇
  1983年   14篇
  1982年   15篇
  1981年   12篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1974年   6篇
排序方式: 共有4102条查询结果,搜索用时 453 毫秒
111.
TP53’s role as guardian of the genome diminishes with age, as the probability of mutation increases. Previous studies have shown an association between p53 gene mutations and cancer. However, the role of somatic TP53 mutations in the steep rise in cancer rates with aging has not been investigated at a population level. This relationship was quantified using the International Agency for Research on Cancer (IARC) TP53 and GLOBOCAN cancer databases. The power function exponent of the cancer rate was calculated for 5-y age-standardized incidence or mortality rates for up to 25 cancer sites occurring in adults of median age 42 to 72 y. Linear regression analysis of the mean percentage of a cancer’s TP53 mutations and the corresponding cancer exponent was conducted for four populations: worldwide, Japan, Western Europe, and the United States. Significant associations (P ≤ 0.05) were found for incidence rates but not mortality rates. Regardless of the population studied, positive associations were found for all cancer sites, with more significant associations for solid tumors, excluding the outlier prostate cancer or sex-related tumors. Worldwide and Japanese populations yielded P values as low as 0.002 and 0.005, respectively. For the United States, a significant association was apparent only when analysis utilized the Surveillance, Epidemiology, and End Results (SEER) database. This study found that TP53 mutations accounts for approximately one-quarter and one-third of the aging-related rise in the worldwide and Japanese incidence of all cancers, respectively. These significant associations between TP53 mutations and the rapid rise in cancer incidence with aging, considered with previously published literature, support a causal role for TP53 according to the Bradford-Hill criteria. However, questions remain concerning the contribution of TP53 mutations to neoplastic development and the role of factors such as genetic instability, obesity, and gene deficiencies other than TP53 that reduce p53 activity.  相似文献   
112.
“RASopathies” are a group of developmental syndromes with partly overlapping clinical symptoms that are caused by germline mutations of genes within the Ras/MAPK signaling pathway. Mutations affecting this pathway can also occur in a mosaic state, resulting in congenital syndromes often distinct from those generated by the corresponding germline mutations. For syndromes caused by mosaic mutations of the Ras/MAPK signaling pathway, the term “mosaic RASopathies” has been proposed. In the following article, genetic and phenotypic aspects of mosaic RASopathies will be discussed.  相似文献   
113.
Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states.

Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages.

This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.  相似文献   
114.

Background

Recently, we showed that the c.40_42delAGA (p.Arg14del) mutation in the phospholamban (PLN) gene can be identified in 10–15 % of Dutch patients with dilated cardiomyopathy or arrhythmogenic cardiomyopathy. The arrhythmogenic burden of the p.Arg14del mutation was illustrated by the high rate of appropriate ICD discharges and a positive family history for sudden cardiac death.

Methods

Our goal was to evaluate the geographical distribution and the origin of this specific mutation in the Netherlands and to get an estimation of the prevalence in a Dutch population cohort. Therefore, we investigated the postal codes of the places of residence of PLN p.Arg14del mutation carriers and places of birth of their ancestors. In addition, a large population-based cohort (PREVEND) was screened for the presence of this mutation.

Results

By April 2012, we had identified 101 probands carrying the PLN p.Arg14del mutation. A total of 358 family members were also found to carry this mutation, resulting in a total of 459 mutation carriers. The majority of mutation carriers live in the northern part of the Netherlands and analysing their grandparents’ places of birth indicated that the mutation likely originated in the eastern part of the province of Friesland. In the PREVEND cohort we identified six heterozygous PLN p.Arg14del mutation carriers out of 8,267 subjects (0.07 %).

Conclusion

The p.Arg14del mutation in the PLN gene is the most frequently identified mutation in Dutch cardiomyopathy patients. The mutation that arose 575–825 years ago is likely to have originated from the eastern part of the province of Friesland and is highly prevalent in the general population in the northern part of the Netherlands.  相似文献   
115.
Porphyromonas gingivalis, as a major pathogen of periodontitis, could rapidly adhere to and invade host gingival epithelial cells (GECs) for the induction of infection. One ATP-binding cassette (ABC) transporter gene was found to be upregulated during this infection process, however, the molecular mechanisms remain unclear. In this study, we systemically investigated the messenger RNA level changes of all ABC transporter family genes in P. gingivalis while being internalized within GECs by real-time polymerase chain reaction. We identified that two ABC transporter genes, PG_RS04465 (PG1010) and PG_RS07320 (PG1665), were significantly increased in P. gingivalis after coculturing with GECs. Mutant strains with knockout (KO) of these two genes were generated by homogenous recombination. PG_RS04465 and PG_RS07320 KO mutants showed no change in the growth of bacteria per se. Knockdown of PG_RS07320, but not PG_RS04465, caused decreased endotoxin level in the bacteria. In contrast, both mutant strains showed decreased Arg- and Lys-gingipains activities, with significantly reduced adhesion and invasion capabilities. Secreted interleukin-1β (IL-1β) and IL-6 levels in GECs cocultured with PG_RS04465 or PG_RS07320 KO mutants were also decreased, whereas, only the cells cocultured with PG_RS07320 KO mutants showed significant decrease. In addition, virulence study using mouse revealed that both KO mutant strains infection caused less mouse death than wild-type strains, showing reduced virulence of two KO strains. These results indicated that ABC transporter genes PG_RS04465 and PG_RS07320 are positive regulators of the virulence of P. gingivalis.  相似文献   
116.
The replicon system, which mimics viral genome replication in culture cells, has been widely used to analyze the genome replication of the hepatitis C virus (HCV). However, most HCV genomes used in the system include adaptive mutations (AMs) that are vital for replication in culture cells despite the nonexistence of such mutations in the genome of wild-type (WT) HCV in patients. In order to study the genome replications of WT HCV, new HCV subgenomic replicon (SGR) systems were established using Huh-7.5-derived cells producing Sec14-like protein 2 constitutively and SGR of KT9 (one of the HCV genotype 1b clones) with WT genome (SGR KT9WT) in this study. The replication efficiency and sensitivities of SGR KT9WT to anti-HCV drugs in the cloned cells permanently bearing replicon RNA, HS55-4 cells, were similar to those of reports using SGR, including AM. The SGR transient transfection system using SGR KT9WT and SGR KT9AM encoding secreted Nano-luciferase and HS55-4C cells established by the elimination of SGR KT9 RNA from HS55-4 cells, however, showed that the replication efficiency of SGR KT9WT was much lower than that of SGR KT9AM under a same condition. Furthermore, the sensitivities of SGR KT9WT to almost all tested anti-HCV reagents, except the inhibitor of miR-122, a cellular factor important for HCV replication, were quite low compared with SGR KT9AM. These results suggested that the new replicon systems might not only provide information about precise responses against new anti-HCV drugs but also reveal novel molecular mechanisms supporting negligent proliferation of HCV.  相似文献   
117.
Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65–11.07×10−6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.  相似文献   
118.
Hsp16.3, a molecular chaperone, plays a vital role in the growth and survival of Mycobacterium tuberculosis inside the host. We previously reported that deletion of three amino acid residues (142STN144) from C-terminal extension (CTE) of Hsp16.3 triggers its structural perturbation and increases its chaperone activity, which reaches its apex upon the deletion of its entire CTE (141RSTN144). Thus, we hypothesized that Arg141 (R141) and Ser142 (S142) in the CTE of Hsp16.3 possibly hold the key in maintaining its native-like structure and chaperone activity. To test this hypothesis, we generated two deletion mutants in which R141 and S142 were deleted individually (Hsp16.3ΔR141 and Hsp16.3ΔS142) and three substitution mutants in which R141 was replaced by lysine (Hsp16.3R141K), alanine (Hsp16.3R141A), and glutamic acid (Hsp16.3R141E), respectively. Hsp16.3ΔS142 or Hsp16.3R141K mutant has native-like structure and chaperone activity. Deletion of R141 from the CTE (Hsp16.3ΔR141) perturbs the secondary and tertiary structure, lowers the subunit exchange dynamics and decreases the chaperone activity of Hsp16.3. But, the substitution of R141 with alanine (Hsp16.3R141A) or glutamic acid (Hsp16.3R141E) perturbs its secondary and tertiary structure. Surprisingly, such charge tampering of R141 enhances the subunit exchange dynamics and chaperone activity of Hsp16.3. Interestingly, neither the deletion of R141/S142 nor the substitution of R141 with lysine, alanine and glutamic acid affects the oligomeric mass/size of Hsp16.3. Overall, our study suggests that R141 (especially the positive charge on R141) plays a crucial role in maintaining the native-like structure as well as in regulating subunit exchange dynamics and chaperone activity of Hsp16.3.  相似文献   
119.
Many computational methods have been developed to discern intratumor heterogeneity (ITH) using DNA sequence data from bulk tumor samples. These methods share an assumption that two mutations arise from the same subclone if they have similar mutant allele-frequencies (MAFs), and thus it is difficult or impossible to distinguish two subclones with similar MAFs. Single-cell DNA sequencing (scDNA-seq) data can be very informative for ITH inference. However, due to the difficulty of DNA amplification, scDNA-seq data are often very noisy. A promising new study design is to collect both bulk and single-cell DNA-seq data and jointly analyze them to mitigate the limitations of each data type. To address the analytic challenges of this new study design, we propose a computational method named BaSiC (B ulk tumor a nd Si ngle C ell), to discern ITH by jointly analyzing DNA-seq data from bulk tumor and single cells. We demonstrate that BaSiC has comparable or better performance than the methods using either data type. We further evaluate BaSiC using bulk tumor and single-cell DNA-seq data from a breast cancer patient and several leukemia patients.  相似文献   
120.
Missense mutations of the RET gene have been identified in both multiple endocrine neoplasia (MEN) type 2A/B and Hirschsprung disease (HSCR: congenital absence of the enteric nervous system, ENS). Current consensus holds that MEN2A/B and HSCR are caused by activating and inactivating RET mutations, respectively. However, the biological significance of RET missense mutations in vivo has not been fully elucidated. In the present study, we introduced one MEN2B-associated (M918T) and two HSCR-associated (N394K and Y791F) RET missense mutations into the corresponding regions of the mouse Ret gene by genome editing (RetM919T, RetN396K and RetY792F) and performed histological examinations of Ret-expressing tissues to understand the pathogenetic impact of each mutant in vivo. RetM919T/+ mice displayed MEN2B-related phenotypes, including C-cell hyperplasia and abnormal enlargement of the primary sympathetic ganglia. Similar sympathetic phenotype was observed in RetM919T/- mice, demonstrating a strong pathogenetic effect of the Ret M918T by a single-allele expression. In contrast, no abnormality was found in the ENS of mice harboring the Ret N394K or Y791F mutation. Most surprisingly, single-allele expression of RET N394K or Y791F was sufficient for normal ENS development, indicating that these RET mutants exert largely physiological function in vivo. This study reveals contrasting pathogenetic effects between MEN2B- and HSCR-associated RET missense mutations, and suggests that some of HSCR-associated RET missense mutations are by themselves neither inactivating nor pathogenetic and require involvement of other gene mutations for disease expressivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号