首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3369篇
  免费   318篇
  国内免费   137篇
  2024年   15篇
  2023年   102篇
  2022年   122篇
  2021年   228篇
  2020年   257篇
  2019年   302篇
  2018年   297篇
  2017年   274篇
  2016年   272篇
  2015年   295篇
  2014年   337篇
  2013年   746篇
  2012年   230篇
  2011年   142篇
  2010年   59篇
  2009年   44篇
  2008年   25篇
  2007年   10篇
  2006年   10篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有3824条查询结果,搜索用时 17 毫秒
11.
《Autophagy》2014,10(5):717-720
  相似文献   
12.
《Autophagy》2013,9(2):284-285
  相似文献   
13.
The NLR (nucleotide-binding domain leucine-rich repeat containing) proteins serve as regulators of inflammatory signaling pathways. NLRX1, a mitochondria-localized NLR protein, has been previously shown to negatively regulate inflammatory cytokine production activated via the MAVS-DDX58 (RIG-I) pathway. The literature also indicates that DDX58 has a negative impact upon autophagy. Consistent with the inhibitory role of NLRX1 on DDX58, our recent study indicates a role of NLRX1 in augmenting virus-induced autophagy. This effect is through its interaction with another mitochondrial protein TUFM (Tu translation elongation factor, mitochondrial, also known as EF-TuMT, COXPD4, and P43). TUFM also reduces DDX58-activated cytokines but augments autophagy. Additionally it interacts with ATG12–ATG5-ATG16L1 to form a molecular complex that modulates autophagy. The work shows that both NLRX1 and TUFM work in concert to reduce cytokine response and augment autophagy.  相似文献   
14.
The midgut epithelial cells of many invertebrates may possess microorganisms which act as symbionts or pathogens (bacteria, microsporidia, viruses). During our previous studies on Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada), which examined alterations of the midgut epithelium during oogenesis, we found that some of the specimens were infected with microsporidia. All stages of pathogens occurred in the cytoplasm of the digestive cells in the midgut epithelium of I. g. granulifer that were infected with microsporidia: meronts, sporonts, sporoblasts, and spores. The cytoplasm of the digestive cells was rich in mitochondria, cisterns of rough endoplasmic reticulum (RER), and Golgi complexes. Autophagy in the digestive cells of the dorsal midgut was much more intensive in comparison with noninfected specimens. Membranes of phagophores surrounded the pathogens forming autophagosomes. These latter structures fused with lysosomes forming autolysosomes and residual bodies appeared. Neither glycogen granules nor droplets of varying electron density, which accumulated in digestive cells during vitellogenesis and choriogenesis, appeared in individuals with microsporidia. While the midgut epithelium in noninfected specimens takes part in vitellogenesis and choriogenesis, in infected specimens, midgut cells are involved in the process of autophagy as a survival strategy.  相似文献   
15.
《Autophagy》2013,9(12):1553-1554
MicroRNAs (miRs) are increasingly important diagnostic and prognostic markers in cancer but have not been defined in medullary thyroid carcinoma (MTC). MiR microarray profiling was performed on 19 primary MTC tumors, validated with qPCR in 45 cases and correlated with clinical outcomes. MiRs-183 and 375 were overexpressed and miR-9* underexpressed in sporadic vs. hereditary MTC (SMTC; HMTC). MiR-183 and 375 overexpression predicted lateral nodal metastases, residual disease, distant metastases and mortality. MiR-183 knockdown in an MTC cell line (TT cells) reduced cellular proliferation in association with elevated LC3B expression. This is suggestive of increased autophagic flux and potential cell death via autophagy induction. MiRs may subsequently be shown to serve as efficacious therapeutic strategies in MTC with a mechanism based upon autophagy.  相似文献   
16.
《Autophagy》2013,9(12):1490-1499
The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.  相似文献   
17.
Clinical oncology heavily relies on the use of radiotherapy, which often leads to merely transient responses that are followed by local or distant relapse. The molecular mechanisms explaining radioresistance are largely elusive. Here, we identified a dual role of autophagy in the response of cancer cells to ionizing radiation. On one hand, we observed that the depletion of essential autophagy-relevant gene products, such as ATG5 and Beclin 1, increased the sensitivity of human or mouse cancer cell lines to irradiation, both in vitro (where autophagy inhibition increased radiation-induced cell death and decreased clonogenic survival) and in vivo, after transplantation of the cell lines into immunodeficient mice (where autophagy inhibition potentiated the tumour growth-inhibitory effect of radiotherapy). On the other hand, when tumour proficient or deficient for autophagy were implanted in immunocompetent mice, it turned out that defective autophagy reduced the efficacy of radiotherapy. Indeed, radiotherapy elicited an anti-cancer immune response that was dependent on autophagy-induced ATP release from stressed or dying tumour cells and was characterized by dense lymphocyte infiltration of the tumour bed. Intratumoural injection of an ecto-ATPase inhibitor restored the immune infiltration of autophagy-deficient tumours post radiotherapy and improved the growth-inhibitory effect of ionizing irradiation. Altogether, our results reveal that beyond its cytoprotective function, autophagy confers immunogenic properties to tumours, hence amplifying the efficacy of radiotherapy in an immunocompetent context. This has far-reaching implications for the development of pharmacological radiosensitizers.  相似文献   
18.
MYO1C, a single-headed class I myosin, associates with cholesterol-enriched lipid rafts and facilitates their recycling from intracellular compartments to the cell surface. Absence of functional MYO1C disturbs the cellular distribution of lipid rafts, causes the accumulation of cholesterol-enriched membranes in the perinuclear recycling compartment, and leads to enlargement of endolysosomal membranes. Several feeder pathways, including classical endocytosis but also the autophagy pathway, maintain the health of the cell by selective degradation of cargo through fusion with the lysosome. Here we show that loss of functional MYO1C leads to an increase in total cellular cholesterol and its disrupted subcellular distribution. We observe an accumulation of autophagic structures caused by a block in fusion with the lysosome and a defect in autophagic cargo degradation. Interestingly, the loss of MYO1C has no effect on degradation of endocytic cargo such as EGFR, illustrating that although the endolysosomal compartment is enlarged in size, it is functional, contains active hydrolases, and the correct pH. Our results highlight the importance of correct lipid composition in autophagosomes and lysosomes to enable them to fuse. Ablating MYO1C function causes abnormal cholesterol distribution, which has a major selective impact on the autophagy pathway.  相似文献   
19.
Macroautophagy is a major degradation mechanism of cell components via the lysosome. Macroautophagy greatly contributes to not only cell homeostasis but also the prevention of various diseases. Because macroautophagy proceeds through multi-step reactions, researchers often face a persistent question of how macroautophagic activity can be measured correctly. To make a straightforward determination of macroautophagic activity, diverse monitoring assays have been developed. Direct measurement of lysosome-dependent degradation of radioisotopically labeled cell proteins has long been applied. Meanwhile, indirect monitoring procedures have been developed. In these assays, autophagosome marker proteins, microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II) and gamma-aminobutyric acid receptor-associated protein-II (GABARAP-II) have been analyzed and the validity of the assays strongly depends on appropriate assessment of the fluctuation of LC3-II and/or GABARAP-II levels in the presence or absence of lysosomal inhibitors. This article describes these monitoring methods, paying special attention to the principles and characteristics of each procedure.  相似文献   
20.
Recent studies have shown that tumour necrosis factor‐α–induced protein 8 like‐1(TIPE1) plays distinct roles in different cancers. TIPE1 inhibits tumour proliferation and metastasis in a variety of tumours but acts as an oncogene in cervical cancer. The role of TIPE1 in nasopharyngeal carcinoma (NPC) remains unknown. Interestingly, TIPE1 expression was remarkably increased in NPC tissue samples compared to adjacent normal nasopharyngeal epithelial tissue samples in our study. TIPE1 expression was positively correlated with that of the proliferation marker Ki67 and negatively correlated with patient lifespan. In vitro, TIPE1 inhibited autophagy and induced cell proliferation in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells. In addition, knocking down TIPE1 expression promoted autophagy and decreased proliferation, whereas overexpressing TIPE1 increased the levels of pmTOR, pS6 and P62 and decreased the level of pAMPK and the LC3B. Furthermore, the decrease in autophagy was remarkably rescued in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells treated with the AMPK activator AICAR. In addition, TIPE1 promoted tumour growth in BALB/c nude mice. Taken together, results indicate that TIPE1 promotes NPC progression by inhibiting autophagy and inducing cell proliferation via the AMPK/mTOR signalling pathway. Thus, TIPE1 could potentially be used as a valuable diagnostic and prognostic biomarker for NPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号