首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31935篇
  免费   2563篇
  国内免费   2538篇
  37036篇
  2024年   169篇
  2023年   786篇
  2022年   923篇
  2021年   1282篇
  2020年   1298篇
  2019年   1513篇
  2018年   1298篇
  2017年   1148篇
  2016年   1188篇
  2015年   1500篇
  2014年   1891篇
  2013年   2806篇
  2012年   1362篇
  2011年   1605篇
  2010年   1120篇
  2009年   1691篇
  2008年   1757篇
  2007年   1714篇
  2006年   1540篇
  2005年   1291篇
  2004年   1167篇
  2003年   987篇
  2002年   801篇
  2001年   668篇
  2000年   609篇
  1999年   555篇
  1998年   521篇
  1997年   495篇
  1996年   395篇
  1995年   361篇
  1994年   300篇
  1993年   313篇
  1992年   258篇
  1991年   241篇
  1990年   201篇
  1989年   171篇
  1988年   147篇
  1987年   124篇
  1986年   122篇
  1985年   142篇
  1984年   115篇
  1983年   70篇
  1982年   125篇
  1981年   74篇
  1980年   61篇
  1979年   39篇
  1978年   27篇
  1977年   15篇
  1976年   13篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual''s level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.  相似文献   
983.
Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.  相似文献   
984.
Ischaemic strokes evoke blood–brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho‐kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho‐kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil‐ versus vehicle‐treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post‐ischaemia or 4 h post‐ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress‐ and tight junction‐related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen–glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin‐5. Cotreatment of cells with Y‐27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho‐kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions.

  相似文献   

985.
Water stress is one of the most important factors limiting the growth and productivity of crops. The implication of compatible osmolytes such as proline and polyamines in osmotic adjustment has been widely described in numerous plants species under stress conditions. In the present study, we investigated the response of five cherry tomato cultivars (Solanum lycopersicum L.) subjected to moderate water stress in order to shed light on the involvement of proline and polyamine metabolism in the mechanisms of tolerance to moderate water stress. Our results indicate that the most water stress‐resistant cultivar (Zarina) had increased degradation of proline associated with increased polyamine synthesis, with a higher concentration of spermidine and spermine under stress conditions. In contrast, Josefina, the cultivar most sensitive to water stress, showed a proline accumulation associated with increased synthesis after being subjected to stress. In turn, in this cultivar, no rise in polyamine synthesis was detected. Therefore, all the data appear to indicate that polyamine metabolism is more involved in the tolerance response to moderate water stress.  相似文献   
986.
Tree‐rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree‐ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and‐climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long‐term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree‐ring‐based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short‐term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree‐ring‐based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.  相似文献   
987.
988.
Accumulating evidence suggests that inflammation has a key role in the pathogenesis of osteoarthritis (OA). Nitric oxide (NO) has been established as one of the major inflammatory mediators in OA and drives many pathological changes during the development and progression of OA. Excessive production of NO in chondrocytes promotes cartilage destruction and cellular injury. The synthesis of NO in chondrocytes is catalyzed by inducible NO synthase (iNOS), which is thereby an attractive therapeutic target for the treatment of OA. A number of direct and indirect iNOS inhibitors, bioactive compounds, and plant-derived small molecules have been shown to exhibit chondroprotective effects by suppressing the expression of iNOS. Many of these iNOS inhibitors hold promise for the development of new, disease-modifying therapies for OA; however, attempts to demonstrate their success in clinical trials are not yet successful. Many plant extracts and plant-derived small molecules have also shown promise in animal models of OA, though further studies are needed in human clinical trials to confirm their therapeutic potential. In this review, we discuss the role of iNOS in OA pathology and the effects of various iNOS inhibitors in OA.  相似文献   
989.
Respiratory tract coinfections, specifically involving influenza A virus (IAV) and Streptococcus pneumoniae (S. pneumoniae), remain a major health problem worldwide. Secondary bacterial pneumonia is a common complication and an important cause of mortality related to seasonal and pandemic influenza infections. Vaccination is a basic control strategy against influenza and S. pneumoniae. The fusion protein DnaJ-ΔA146Ply is a vaccine candidate which can induce immune responses against pneumococcal infections via mucosal and subcutaneous immunization in mice. In the present study, we established a co-infection model using mouse-adapted laboratory strains of IAV (PR8) and S. pneumoniae (19F) in mice intranasally and subcutaneously immunized with DnaJ-ΔA146Ply. Our results showed that vaccinated mice suffered decreased weight loss compared with control mice. The survival rates were higher in intranasally and subcutaneously immunized mice than in control mice. In addition, the bacterial loads in nasal washes and lung homogenates were lower in vaccinated mice than in control mice. Furthermore, lung damage was alleviated in vaccinated mice compared with control mice, with less broken alveoli and less proinflammatory cytokine production. Taken together, these results indicate that vaccination with DnaJ-ΔA146Ply shows protective potential against influenza and S. pneumoniae co-infection in mice.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号