首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24804篇
  免费   1961篇
  国内免费   1850篇
  28615篇
  2024年   125篇
  2023年   569篇
  2022年   690篇
  2021年   936篇
  2020年   993篇
  2019年   1211篇
  2018年   1049篇
  2017年   933篇
  2016年   946篇
  2015年   1189篇
  2014年   1515篇
  2013年   2292篇
  2012年   1002篇
  2011年   1180篇
  2010年   869篇
  2009年   1399篇
  2008年   1433篇
  2007年   1364篇
  2006年   1240篇
  2005年   1003篇
  2004年   930篇
  2003年   789篇
  2002年   648篇
  2001年   500篇
  2000年   429篇
  1999年   404篇
  1998年   376篇
  1997年   382篇
  1996年   293篇
  1995年   242篇
  1994年   219篇
  1993年   212篇
  1992年   178篇
  1991年   157篇
  1990年   130篇
  1989年   111篇
  1988年   98篇
  1987年   90篇
  1986年   74篇
  1985年   83篇
  1984年   63篇
  1983年   40篇
  1982年   70篇
  1981年   49篇
  1980年   40篇
  1979年   25篇
  1978年   16篇
  1977年   11篇
  1976年   6篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
Tadmor is a Syrian barley landrace that has adapted to semi-arid environments. Its leaves are pale green because of a 30% decrease in the chlorophyll and the carotenoid content of the chloroplasts (leading to a 7·5% decrease in light absorption) compared with barley genotypes that are not adapted to harsh Mediterranean climatic conditions (e.g. Plaisant). This difference in pigment content was attenuated during growth of the plants in strong light, but was strongly amplified when strong light was combined with a high growth temperature. The low pigment content of Tadmor leaves was not associated with significant changes in the pigment distribution between the photosystems or between the reaction centres of the photosystems and their associated chlorophyll antennae. No significant difference in the photosynthetic activity (O2 production per unit absorbed light) was observed between Tadmor and Plaisant. The conversion of violaxanthin to zeaxanthin in strong light and its reversal in darkness were much faster and operated at a higher capacity in Tadmor leaves compared with Plaisant leaves, resulting in an increased photostability of photosystem II in the former leaves. The accelerated xanthophylls interconversion in the Syrian landrace was associated with, and possibly related to, an increased fluidity of the thylakoid membranes. The lipid peroxide level was lower in Tadmor compared with Plaisant. In contrast, no difference was found in the non-photochemical quenching of chlorophyll fluorescence between the two barley genotypes. The data indicate that the pale green Syrian landrace is equipped to survive excessive irradiance through a passive reduction of the light absorptance of its leaves, which mitigates the heating effects of strong light, and through the active protection of its photochemical apparatus by a rapid xanthophyll cycling.  相似文献   
13.
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.  相似文献   
14.
15.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
16.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.  相似文献   
17.
Under stress integrated germination test (SIGT), seeds undergo osmo-saline stresses, which enable to detect differences in vigour of long-term stored seeds with high germination percentage (G%). The quality of Brassica villosa subsp. drepanensis seeds stored in a genebank (at ? 20°C for 16 years) was compared with seeds at harvest by standard germination tests (GT), SIGT and cytogenetic analysis. No differences were detected in G% and mean germination time under GT. Conversely, SIGT performed with NaCl ? 0.9 MPa osmotic potential did not influence G% at harvest but reduced that of stored seeds, SIGT at ? 1.4 MPa reduced G% of both. Cytogenetic analysis showed reduction of mitotic index, appearance of chromosomal aberrations and smaller nucleoli in stored seeds compared with harvest seeds germinated in water. SIGT at ? 0.9 MPa had no effect on mitotic index, but increased chromosome aberrations and nucleoli number. SIGT at ? 1.4 MPa inhibited G% of harvest and stored seeds, reduced mitoses in harvest and completely prevented it in stored seeds. The results indicate that GT does not faithfully reflect the quality of stored seeds, with misinterpretation of their vigour, whereas SIGT and cytogenetical parameters are sensitive, reliable and inexpensive methods for early prediction of genetic erosion in germplasm banks.  相似文献   
18.
Evaluation of the relationships between muscle structure and digging function in fossorial species is limited. Badgers and other fossorial specialists are expected to have massive forelimb muscles with long fascicles capable of substantial shortening for high power and applying high out‐force to the substrate. To explore this hypothesis, we quantified muscle architecture in the thoracic limb of the American badger (Taxidea taxus) and estimated the force, power, and joint torque of its intrinsic musculature in relation to the use of scratch‐digging behavior. Architectural properties measured were muscle mass, belly length, fascicle length, pennation angle, and physiological cross‐sectional area. Badgers possess hypertrophied shoulder flexors/humeral retractors, elbow extensors, and digital flexors. The triceps brachii is particularly massive and has long fascicles with little pennation, muscle architecture consistent with substantial shortening capability, and high power. A unique feature of badgers is that, in addition to elbow joint extension, two biarticular heads (long and medial) of the triceps are capable of applying high torques to the shoulder joint to facilitate retraction of the forelimb throughout the power stroke. The massive and complex digital flexors show relatively greater pennation and shorter fascicle lengths than the triceps brachii, as well as compartmentalization of muscle heads to accentuate both force production and range of shortening during flexion of the carpus and digits. Muscles of most functional groups exhibit some degree of specialization for high force production and are important for stabilizing the shoulder, elbow, and carpal joints against high limb forces generated during powerful digging motions. Overall, our findings support the hypothesis and indicate that forelimb muscle architecture is consistent with specializations for scratch‐digging. Quantified muscle properties in the American badger serve as a comparator to evaluate the range of diversity in muscle structure and contractile function that exists in mammals specialized for fossorial habits. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
19.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   
20.
Hepatocellular carcinoma (HCC) is a subtype of malignant liver cancer with poor prognosis and limited treatment options. It is noteworthy that mechanical forces in tumor microenvironment play a pivotal role in mediating the behaviors and functions of tumor cells. As an instrumental type of mechanical forces in vivo, fluid shear stress (FSS) has been reported having potent physiologic and pathologic effects on cancer progression. However, the time-dependent mechanochemical transduction in HCC induced by FSS remains unclear. In this study, hepatocellular carcinoma HepG2 cells were exposed to 1.4 dyn/cm2 FSS for transient duration (15s and 30s), short duration (5 min, 15 min and 30 min) and long duration (1h, 2h and 4h), respectively. The expression and translocation of Integrins induced FAK-Rho GTPases signaling events were examined. Our results showed that FSS endowed HepG2 cells with higher migration ability via reorganizing cellular F-actin and disrupting intercellular tight junctions. We further demonstrated that FSS regulated the expression and translocation of Integrins and their downstream signaling cascade in time-dependent patterns. The FSS downregulated focal adhesion components (Paxillin, Vinculin and Talin) while upregulated the expression of Rho GTPases (Cdc42, Rac1 and RhoA) in long durations. These results indicated that FSS enhanced tumor cell migration through Integrins-FAK-Rho GTPases signaling pathway in time-dependent manners. Our in vitro findings shed new light on the role of FSS acting in physiologic and pathological processes during tumor progression, which has emerged as a promising clinical strategy for liver carcinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号