首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2937篇
  免费   201篇
  国内免费   117篇
  3255篇
  2024年   4篇
  2023年   50篇
  2022年   64篇
  2021年   66篇
  2020年   75篇
  2019年   84篇
  2018年   94篇
  2017年   86篇
  2016年   94篇
  2015年   88篇
  2014年   130篇
  2013年   181篇
  2012年   126篇
  2011年   133篇
  2010年   86篇
  2009年   122篇
  2008年   155篇
  2007年   165篇
  2006年   145篇
  2005年   104篇
  2004年   112篇
  2003年   96篇
  2002年   107篇
  2001年   64篇
  2000年   58篇
  1999年   59篇
  1998年   84篇
  1997年   52篇
  1996年   51篇
  1995年   53篇
  1994年   42篇
  1993年   42篇
  1992年   37篇
  1991年   26篇
  1990年   24篇
  1989年   24篇
  1988年   23篇
  1987年   16篇
  1986年   15篇
  1985年   41篇
  1984年   46篇
  1983年   31篇
  1982年   36篇
  1981年   21篇
  1980年   17篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1974年   4篇
排序方式: 共有3255条查询结果,搜索用时 15 毫秒
991.
Synthesis and characterization of a flexible crosslinked polystyrene graftedpolyethyleneglycol (PEG) resin which allows for efficient synthesis of aggregating peptides in high yield and purity has been described. The resin showed rigidity, mechanical and chemical stability, and improved swelling and solvation characteristics essential for the successful synthesis of peptides. To demonstrate the usefulness of the new resin in polypeptide synthesis, a 4-(hydroxymethyl)phenoxyacetic acid (HMPA) handle was anchored to the free terminus of PEG and a typical hydrophobic peptide, Alzheimer's -amyloid plaque protein (33–42) fragment, was synthesized using Fmoc/t-Bu tactics. The new resin was compared with commercially available 1 mol% divinylbenzene (DVB)-crosslinked Tentagel resin under identical conditions. HPLC profiles and LC/MS analyses of the crude products revealed the high synthetic efficiency of the newly developed support. Efficiency of the resin was further illustrated by the gel-phase synthesis of a 15-residue peptide, (28–42) fragment of -amyloid protein.  相似文献   
992.
Photoionization of an atom by X-rays usually removes an inner shell electron from the atom, leaving behind a perturbed "hollow ion" whose relaxation may take different routes. In light elements, emission of an Auger electron is common. However, the energy and the total number of electrons released from the atom may be modulated by shake-up and shake-off effects. When the inner shell electron leaves, the outer shell electrons may find themselves in a state that is not an eigen-state of the atom in its surroundings. The resulting collective excitation is called shake-up. If this process also involves the release of low energy electrons from the outer shell, then the process is called shake-off. It is not clear how significant shake-up and shake-off contributions are to the overall ionization of biological materials like proteins. In particular, the interaction between the outgoing electron and the remaining system depends on the chemical environment of the atom, which can be studied by quantum chemical methods. Here we present calculations on model compounds to represent the most common chemical environments in proteins. The results show that the shake-up and shake-off processes affect approximately 20% of all emissions from nitrogen, 30% from carbon, 40% from oxygen, and 23% from sulfur. Triple and higher ionizations are rare for carbon, nitrogen, and oxygen, but are frequent for sulfur. The findings are relevant to the design of biological experiments at emerging X-ray free-electron lasers.  相似文献   
993.
994.
Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that in recent years has found numerous applications for studying biological phenomena. In this article, we scrutinize one of these applications, namely, FCS as a technique for studying leakage of fluorescent molecules from large unilamellar lipid vesicles. Specifically, we derive the mathematical framework required for using FCS to quantify leakage of fluorescent molecules from large unilamellar lipid vesicles, and we describe the appropriate methodology for successful completion of FCS experiments. By use of this methodology, we show that FCS can be used to accurately quantify leakage of fluorescent molecules from large unilamellar lipid vesicles, including leakage of fluorescent molecules of different sizes. To demonstrate the applicability of FCS, we have investigated the antimicrobial peptide mastoparan X. We show that mastoparan X forms transient transmembrane pores in POPC/POPG (3:1) vesicles, resulting in size-dependent leakage of molecules from the vesicles. We conclude the paper by discussing some of the advantages and limitations of FCS as compared to other existing methods to measure leakage from large unilamellar lipid vesicles.  相似文献   
995.
The presence of cGMP-dependent protein kinase I (cGKI) in murine adipocytes has been questioned, although cGKI was implicated in the thermogenic program of fat cells (FCs) and to exert anti-hypertrophic/-inflammatory effects in white adipose tissue. Herein, cGKI was detected in adipocytes from control mice, whereas FCs from global cGKI knockouts (cGKI−/−) and cGKIα rescue (αRM) mice remained cGKI-negative. cGKI mutants exhibit decreased adipocyte size, plasma leptin levels and reduced body-weights as compared to litter-matched controls. Low abundance of adiponectin in WAT and plasma of αRM animals together with previously confirmed high IL-6 levels indicate a low-grade inflammation. However, αRMs were protected from streptozotocin-induced hyperglycemia. Our results suggest that cGMP/cGKI affects both glucose and FC homeostasis in more complex mode than previously thought.  相似文献   
996.
997.
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.  相似文献   
998.
Hospital‐acquired infections caused by multidrug‐resistant bacteria pose significant challenges for treatment, which necessitate the development of new antibiotics. Antimicrobial peptides are considered potential alternatives to conventional antibiotics. The skin of Anurans (frogs and toads) amphibians is an extraordinarily rich source of antimicrobial peptides. CPF‐C1 is a typical cationic antimicrobial peptide that was originally isolated from the tetraploid frog Xenopus clivii. Our results showed that CPF‐C1 has potent antimicrobial activity against both sensitive and multidrug‐resistant bacteria. It disrupted the outer and inner membranes of bacterial cells. CPF‐C1 induced both propidium iodide uptake into the bacterial cell and the leakage of calcein from large liposome vesicles, which suggests a mode of action that involves membrane disturbance. Scanning electron microscopy and transmission electron microscopy verified the morphologic changes of CPF‐C1‐treated bacterial cells and large liposome vesicles. The membrane‐dependent mode of action signifies that the CPF‐C1 peptide functions freely and without regard to conventional resistant mechanisms. Additionally, it is difficult for bacteria to develop resistance against CPF‐C1 under this action mode. Other studies indicated that CPF‐C1 had low cytotoxicity against mammalian cell. In conclusion, considering the increase in multidrug‐resistant bacterial infections, CPF‐C1 may offer a new strategy that can be considered a potential therapeutic agent for the treatment of diseases caused by multidrug‐resistant bacteria. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
999.
1000.
Self-reactive T cells have shown to have a potential role as regulators of the immune system preventing or even suppressing autoimmunity. One of the most abundant proteins that can be eluted from human HLA molecules is heat shock protein 70 (HSP70). The aims of the current study are to identify HSP70 epitopes based on published HLA elution studies and to investigate whether T cells from healthy individuals may respond to such self-epitopes. A literature search and subsequent in silico binding prediction based on theoretical MHC binding motifs resulted in the identification of seven HSP70 epitopes. PBMCs of healthy controls proliferated after incubation with two of the seven peptides (H167 and H290). Furthermore H161, H290, and H443 induced CD69 expression or production of cytokines IFNγ or TNFα in healthy controls. The identification of these naturally presented epitopes and the response they elicit in the normal immune system make them potential candidates to study during inflammatory conditions as well as in autoimmune diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号