首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   45篇
  国内免费   5篇
  2024年   1篇
  2023年   8篇
  2022年   7篇
  2021年   7篇
  2020年   27篇
  2019年   20篇
  2018年   12篇
  2017年   23篇
  2016年   23篇
  2015年   11篇
  2014年   12篇
  2013年   35篇
  2012年   25篇
  2011年   33篇
  2010年   16篇
  2009年   33篇
  2008年   41篇
  2007年   43篇
  2006年   47篇
  2005年   44篇
  2004年   19篇
  2003年   27篇
  2002年   34篇
  2001年   30篇
  2000年   26篇
  1999年   17篇
  1998年   19篇
  1997年   6篇
  1996年   11篇
  1995年   19篇
  1994年   16篇
  1993年   17篇
  1992年   20篇
  1991年   11篇
  1990年   7篇
  1989年   22篇
  1988年   8篇
  1987年   8篇
  1986年   9篇
  1985年   14篇
  1984年   10篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1977年   1篇
排序方式: 共有835条查询结果,搜索用时 31 毫秒
71.
72.
In woodland streams, the decomposition of allochthonous organic matter constitutes a fundamental ecosystem process, where aquatic hyphomycetes play a pivotal role. It is therefore greatly affected by water temperature and nutrient concentrations. The individual effects of these factors on the decomposition of litter have been studied previously. However, in the climate warming scenario predicted for this century, water temperature and nutrient concentrations are expected to increase simultaneously, and their combined effects on litter decomposition and associated biological activity remains unevaluated. In this study, we addressed the individual and combined effects of water temperature (three levels) and nutrient concentrations (two levels) on the decomposition of alder leaves and associated aquatic hyphomycetes in microcosms. Decomposition rates across treatments varied between 0.0041 day?1 at 5 °C and low nutrient level and 0.0100 day?1 at 15 °C and high nutrient level. The stimulation of biological variables at high nutrients and temperatures indicates that nutrient enrichment of streams might have a higher stimulatory effect on fungal performance and decomposition rates under a warming scenario than at present. The stimulation of fungal biomass and sporulation with increasing temperature at both nutrient levels shows that increases in water temperature might enhance fungal growth and reproduction in both oligotrophic and eutrophic streams. The stimulation of fungal respiration and litter decomposition with increasing temperature at high nutrients indicates that stimulation of carbon mineralization will probably occur at eutrophied streams, while oligotrophic conditions seem to be ‘protected’ from warming. All biological variables were stimulated when both factors increased, as a result of synergistic interactions between factors. Increased water temperature and nutrient level also affected the structure of aquatic hyphomycete assemblages. It is plausible that if water quality of presently eutrophied streams is improved, the potential stimulatory effects of future increases in water temperature on aquatic biota and processes might be mitigated.  相似文献   
73.
The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.  相似文献   
74.
The diatom Eunotia pectinalis (O. F. Müll.?) Rabh. exhibited considerable morphological variability in samples collected over a 13-month period from a softwater Rhode Island stream. All observed morphotypes were classified into three main complexes based upon their valve configuration. These groupings were confirmed by discriminant analysis using quantitative valve characteristics and were named in accordance with their associated varieties: minor (Kütz.) Rabh., pectinalis and ventricosa Grun. Clonal cultures were subjected to a defined series of temperatures, agitation rates and light intensities in order to assess inherent morphological variability. Similar trends were evident for all complexes. Over time, valve length decreased, valve breadth enlarged, and striae number per 10 μm at valve center and apex increased. Morphological plasticity was evident in culture and appeared to be more a function of the clone genotype than the environmental conditions to which it was subjected. One clone originally identified as E. pectinalis var. minor assumed certain morphological features of E. vanheurckii Patr. after four months in culture.  相似文献   
75.
Chironomid communities from three glacial and three non-glacial high mountain streams in three Alpine river basins were analyzed (Conca, Niscli, Cornisello, NE Italy, 46°N, 10°E). Eighteen sampling reaches belonging to five stream types (kryal, subkryal, glacio-rhithral, kreno-rhithral, outlet) were investigated. At each reach, geomorphological, physical, chemical and biological data were collected. Field surveys were carried out during three periods per year from 1996 to 1998: immediately after spring snowmelt, in mid-summer and in early autumn. In all, 439 zoobenthos samples were collected from 5 to 10 microhabitats of 0.1m2 in each reach and date using a standard pond net (mesh size of 250m). About 50% of individuals collected were chironomids (26673 specimens, 53 taxa), with densities ranging from 4 to 2652indm–2. With few exceptions, they dominated as number of taxa and individuals in all reaches. Chironomid subfamilies Diamesinae and Orthocladiinae were most abundant, especially in glacial reaches, where Diamesa spp. constituted up to 100% of the total fauna. Chironomid distribution was analyzed in relation to 37 abiotic variables, referring to stream origin, hydrology, geomorphology, physics and chemistry. Diamesa steinboecki, D. latitarsis gr. A and Pseudokiefferiella parva were the taxa best associated with glacial conditions (i.e. high channel instability or presence of bedrock, high suspended solids and total phosphorous content, low conductivity and silica content, highly variable diel discharge and low mean temperature), while Pseudodiamesa branickii, Corynoneura spp., Eukiefferiella spp., Parorthocladius nudipennis, Tvetenia calvescens/bavarica, Thienemaniella spp. and Micropsectra atrofasciata were mostly associated with non-glacial conditions. Substratum particle size, water depth, current velocity, the presence of riffles/pools and of mosses/algae (Hydrurus foetidus) were the major factors affecting microdistribution of chironomids in the investigated streams.  相似文献   
76.
Intermittent streams are common worldwide, and the ability of invertebrates to recover from floods and drought is a key feature of communities from these highly disturbed ecosystems. The macroinvertebrate assemblages of Kings Creek in northeastern Kansas were sampled regularly from four intermittent and two perennial sites over 2 years (1995–1996) to investigate the response and recovery to seasonal drying and floods. A 9mo drying period reduced taxa richness and density to 14% and 3% of pre-drying assemblages, respectively, in 1995–1996, whereas a 2mo drying period reduced richness by half and density to 4% of pre-drying assemblages in 1996. Floods at intermittent sites reduced densities and richness by 95% and 50%, respectively. A >50 y-flood reduced macroinvertebrate richness by 97% and density by >99% at a downstream perennial site. Resistance and resilience of total macroinvertebrate density was typically greater to floods than to drying, whereas resilience of taxa richness did not differ between disturbance types. The time required for recovery to pre-flood conditions (richness and density) was half as long (27 vs. 76 day) for intermittent sites compared to perennial sites. Colonization of intermittent sites was a function of distance from upstream refugia. Floods were a more important disturbance on assemblages in a downstream reach as compared to upstream reaches. In contrast, upstream reaches were more likely to dry. Recovery following flood and drought was dominated by colonization as opposed to tolerance, thus resilience is more important than resistance in regulating macroinvertebrate communities in these streams, and relative position in the landscape affects disturbance type, intensity, and ability of communities to recover from disturbance.  相似文献   
77.
The Chassahowitzka, Homosassa and Crystal rivers along the central Gulf coast of Florida were studied from 1998 to 2000 to identify factors controlling the abundance and distribution of submersed aquatic vegetation (SAV). Each of these three low-lying coastal rivers are spring-fed and exhibit low to moderate absolute flow rates (flows in either direction because of tidal influences, 0.06–0.46ms–1) with only 14 of the stations sampled for SAV having flow rates in excess of 0.25ms–1. At those stations where flow rates exceeded 0.25ms–1, the substrate was generally comprised of exposed limestone outcroppings and did not provide a favorable habitat for either submersed macrophytes or macroalgae. The remaining sampling stations, where flow rates were less than 0.25ms–1, had suitable substrates (e.g. mud, mud/sand, and sand) for the colonization and subsequent growth of SAV. Light availability and salinity were determined to be major factors affecting the distribution and abundance of SAV. Sampling stations, where the percent of incident light at the surface reaching the substrate was less than 10, had little or no SAV biomass. Low SAV biomass was also linked to sites where annual average salinities exceeded 3.5. Nutrient loads and nutrient concentrations accounted for little variance in SAV biomass after accounting for flow and related substrate type, light and salinity. These latter factors control the distribution and abundance of SAV in these three Florida coastal rivers.  相似文献   
78.
A mediterranean-type climate exists in five widely separated regions; the Mediterranean basin, parts of western North America, parts of western and southern Australia, southwestern South Africa and parts of central Chile. Streams in these regions feature seasonal disturbances of contrasting hydrology with high predictability of the timing of flooding and drying but low constancy. We would expect fish living in these streams to avoid scouring flow and breed after cessation of the flood period. The aim of the present study was to examine the adaptation of the Yarqon bleak, Acanthobrama telavivensis, an endemic cyprinid in the coastal streams of Israel, to mediterranean-type stream (mediterranean—written with a small m, is used in connection with climate or ecological region and is distinguished from Mediterranean that is used in a geographical context, referring to the Mediterranean basin.) conditions. For that we studied its reproductive strategy (age at maturity and life span, gonad activity, oocyte maturation, spawning activity and habitats, appearance of juveniles), in a major costal stream (Yarqon). Our findings show that the Yarqon bleak exhibits life history traits attuned with a mediterranean-climate hydrologic regime. It breeds in late winter and early spring, a window of opportunity between flash floods and habitat desiccation. Being a multiple spawner allows the fish to compensate for the potential loss of part of its reproductive output due to scouring flows of late floods. The ability of the Yarqon bleak to spawn on different substrate-types enables it to take advantage of different stream conditions that pertain in different years. The fish attains pre-adult size (ca. 33–42 mm) within the first year, prior to drying out of most stream reaches, and matures by the beginning of the second year (males >41; females >42 mm). The cost of these tactics is a short life span (4–5 age groups). The reproductive strategy of the Yarqon bleak falls into the category of in-channel breeding but, unlike the case suggested by a low flow recruitment model, the fish breed during the period of flood cessation, a transitional time between high and low flows, rather than at the time of low flow. Breeding at this time of the year in mediterranean-type streams puts early stages somewhat at risk of being washed away by late floods, but gains them a longer period of growth under favorable conditions. We suggest an additional positive tradeoff that should be investigated: the reduced competition with age 0 of other fish that breed later in the season. This suggested model of recruitment during the period of flood cessation seems appropriate for fish in streams with seasonal contrasting flows of high predictability but low constancy.  相似文献   
79.
Understanding the interactions between terrestrial and aquatic ecosystems remains an important research focus in ecology. In arid landscapes, catchments are drained by a channel continuum that represents a potentially important driver of ecological pattern and process in the surrounding terrestrial environment. To better understand the role of drainage networks in arid landscapes, we determined how stream size influences the structure and productivity of riparian vegetation, and the accumulation of organic matter (OM) in soils beneath plants in an upper Sonoran Desert basin. Canopy volume of velvet mesquite (Prosopis velutina), as well as overall plant cover, increased along lateral upland–riparian gradients, and among riparian zones adjacent to increasingly larger streams. Foliar δ13C signatures for P. velutina suggested that landscape patterns in vegetation structure reflect increases in water availability along this arid stream continuum. Leaf litter and annual grass biomass production both increased with canopy volume, and total aboveground litter production ranged from 137 g m−2 y−1 in upland habitat to 446 g m−2 y−1 in the riparian zone of the perennial stream. OM accumulation in soils beneath P. velutina increased with canopy volume across a broad range of drainage sizes; however, in the riparian zone of larger streams, flooding further modified patterns of OM storage. Drainage networks represent important determinants of vegetation structure and function in upper Sonoran Desert basins, and the extent to which streams act as sources of plant-available water and/or agents of fluvial disturbance has implications for material storage in arid soils.  相似文献   
80.
Abstract: Stable isotope studies of food webs in floodplains, large rivers, mangroves, and seagrasses have shown that, although a large proportion of the biomass may come from higher plants, microalgae provide a disproportionate amount of carbon assimilated by metazoan consumers. Evidence is building that this may also be the case for streams, especially those in the tropics. At the level of individual consumer species we also see that the apparent diet may not be reflected in the carbon assimilated. Tropical streams commonly have omnivore‐detritivore species that potentially show this phenomenon. We tested these concepts in four moderately shaded sites in a stream in well‐preserved Atlantic rainforest at Ilha Grande, Rio de Janeiro. We sampled aquatic insects, shrimps and fish as well as potential terrestrial and aquatic primary food sources. Carbon stocks from terrestrial sources predominated over carbon of algal origin (>99% of total). The primary sources of carbon showed distinctly different isotopic signatures: terrestrial sources had δ13C values close to ?30‰, microalgae were ?20‰ and macroalgae were ?25‰. All fauna had δ13C values consistent with a carbon source derived from microalgae. Baetid mayflies and atyid shrimps exert a strong grazing pressure on periphyton and organic sediments but appear to assimilate predominantly microalgae. The palaemonid shrimp Macrobrachium olfersi also ingests large amounts of detritus of terrestrial origin, but apparently assimilates animal prey with algal δ13C signatures. These results support the growing view that tropical stream food chains are primarily algal based.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号