首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3474篇
  免费   394篇
  国内免费   38篇
  2024年   6篇
  2023年   67篇
  2022年   38篇
  2021年   81篇
  2020年   145篇
  2019年   192篇
  2018年   148篇
  2017年   198篇
  2016年   151篇
  2015年   179篇
  2014年   226篇
  2013年   373篇
  2012年   133篇
  2011年   147篇
  2010年   123篇
  2009年   181篇
  2008年   172篇
  2007年   198篇
  2006年   172篇
  2005年   120篇
  2004年   112篇
  2003年   102篇
  2002年   99篇
  2001年   65篇
  2000年   44篇
  1999年   59篇
  1998年   55篇
  1997年   57篇
  1996年   41篇
  1995年   40篇
  1994年   26篇
  1993年   25篇
  1992年   30篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   5篇
排序方式: 共有3906条查询结果,搜索用时 15 毫秒
91.
Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts.  相似文献   
92.
The distribution of last occurrences of fossil taxa in a stratigraphic column are used to infer the pattern, timing and tempo of extinction from the fossil record. Clusters of last occurrences are commonly interpreted as an abrupt pulse of extinction. However, stratigraphic architecture alone can produce clusters of last occurrences that can be misinterpreted as an extinction pulse. These clusters will typically occur in strata that immediately underlie facies changes and sequence‐stratigraphic surfaces. It has been proposed that a basin‐wide analysis of the fossil record within a sequence‐stratigraphic framework can be used to distinguish between clusters of last occurrences caused solely by extinction pulses from those generated by sequence‐stratigraphic architecture. A basin‐wide approach makes it possible to observe lateral facies shifts in response to sea‐level change, mitigating the effects of stratigraphic architecture. Using computer simulations of plausible Late Ordovician mass‐extinction scenarios tuned to an inferred Late Ordovician sea‐level curve, we show that stratigraphically‐generated clusters of last occurrences are observed even in basin‐wide analyses of the simulated fossil records due to the basin‐wide loss of preferred facies for many taxa. Nonetheless, we demonstrate that by coarsening the stratigraphic resolution to the systems‐tract level and identifying facies preferences of simulated taxa, we can filter out taxa whose last occurrences coincide with the basin‐wide loss of their preferred facies. This enables consistent identification of the underlying extinction pattern for a wide variety of extinction scenarios. Applying this approach to empirical field data can help to constrain underlying extinction patterns from the fossil record.  相似文献   
93.
《L'Anthropologie》2021,125(2):102852
This study aims to obtain a chronological and cultural framework of the Evolved Aurignacian in the central Iberian Mediterranean basin and find agreement between this framework and other sequences of the Iberian southeast. Over the last few years, there has been remarkable progress in the research of the Evolved Aurignacian sites in the Valencian area, making a review of the main characteristics of the technocomplex on a regional scale necessary. The recent fieldwork carried out in Cova de les Malladetes (Valencia) and in Cova de les Cendres (Alicante) have been key to understanding the lithic, osseous and ornament assemblages ascribed to the Evolved Aurignacian. Several Bayesian modelled ages have been constructed from the large dataset of chronological dates obtained at Malladetes and Cendres, as well as in other sites. The Bayesian models have allowed us to chronologically place the characteristics of the analysed assemblages. The present research supports the importance of the Aurignacian as the first technocomplex of the Upper Palaeolithic in this area of the Iberian Peninsula.  相似文献   
94.
95.
设计结合不同化学结构底物的酶结合袋是一个巨大的挑战. 传统的湿实验要筛选成千上万甚至上百万个突变体来寻找对特定配体结合的突变体,此过程需要耗费大量的时间和资源. 为了加快筛选过程,我们提出了一种新的工作流程,将分子建模和数据驱动的机器学习方法相结合,生成具有高富集率的突变文库,用于高效筛选能识别特定底物的蛋白质突变体. M. jannaschii酪氨酰tRNA合成酶(Mj. TyrRS)能识别特定的非天然氨基酸并催化形成氨酰tRNA,其不同的突变体能够识别不同结构的非天然氨基酸,并且已经有了许多报道和数据的积累,因此我们使用TyrRS作为一个例子来进行此筛选流程的概念验证. 基于已知的多个Mj. TyrRS的晶体结构及分子建模的结果,我们发现D158G/P是影响残基158~163位α螺旋蛋白骨架变化的关键突变. 我们的模拟结果表明,在含有687个突变体的测试数据中,与随机突变相比,分子建模和打分函数计算排序可以将目标突变体的富集率提高2倍,而使用已知突变体和对应的非天然氨基酸数据训练的机器学习模型进行校准后,筛选富集率可提高11倍. 这种分子建模和机器学习相结合的计算和筛选流程非常有助于Mj.TyrRS的底物特异性设计,可以大大减少湿实验的时间和成本. 此外,这种新方法在蛋白质计算设计领域具有广泛的应用前景.  相似文献   
96.
Geoclimatic factors related to the uplift of the Himalaya and the Quaternary climatic oscillations influence the population genetic connectivity in the Himalaya–Hengduan Mountains (HHM) biodiversity hotspot. Therefore, to explore the relative roles played by these two factors, we examined the population dynamics and dispersal corridors of Incarvillea arguta (Royle) Royle incorporating ensemble species distribution modelling (SDM). Thirty‐seven populations were genotyped using plastid chloroplast DNA and low copy nuclear gene (ncpGS) sequences. Phylogeographic analysis was carried out to reveal the genetic structure and lineage differentiation. Ensemble SDMs were carried out for distributional change in the last glacial maximum, present, and future. Finally, the least cost path method was used to trace out possible dispersal corridors. The haplotypes were divided into four clades with strong geographical structure. The late Miocene origin of I. arguta in the western Himalaya ca. 7.92 Ma indicates lineage diversification related to the uplift of the HHM. The variability in habitat connectivity revealed by SDM is due to change in suitability since the Pleistocene. A putative dispersal corridor was detected along the drainage systems and river valleys, with strong support in the eastern Hengduan Mountains group. Our results support the signature of geoclimatic influence on population genetic connectivity of I. arguta in the HHM. We proposed that the major drainage systems might have assisted the rapid dispersal of isolated riverine plant species I. arguta in the HHM. The population genetic connectivity, using the fine‐tuned ensemble SDMs, enables scientists and policymakers to develop conservation strategies for the species gene pool in the HHM biodiversity hotspots.  相似文献   
97.
Wood growth constitutes the main process for long‐term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis‐driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water‐growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data‐driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of ?0.47 MPa for larch and ?0.66 MPa for spruce, whereas photosynthesis in trees continues down to ?1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.  相似文献   
98.
Parallel evolution has been invoked as a forceful mechanism of ecotype and species formation in many animal taxa. However, parallelism may be difficult to separate from recently monophyletically diverged species that are likely to show complex genetic relationships as a result of considerable shared ancestral variation and secondary hybridization in local areas. Thus, species' degrees of reproductive isolation, barriers to dispersal and, in particular, limited capacities for long‐distance dispersal will affect demographical structures underlying mechanisms of divergent evolution. Here, we used nine microsatellite DNA markers to study intra‐ and interspecific genetic diversity of two recently diverged species of brown macroalgae, Fucus radicans (L. Bergström & L. Kautsky) and Fvesiculosus (Linnaeus), in the Baltic Sea. We further performed biophysical modelling to identify likely connectivity patterns influencing the species' genetic structures. For each species, we found intraspecific contrasting patterns of clonality incidence and population structure. In addition, strong genetic differentiation between the two species within each locality supported the existence of two distinct evolutionary lineages (FST = 0.15–0.41). However, overall genetic clustering analyses across both species' populations revealed that all populations from one region (Estonia) were more genetically similar to each other than to their own taxon from the other two regions (Sweden and Finland). Our data support a hypothesis of parallel speciation. Alternatively, Estonia may be the ancestral source of both species, but is presently isolated by oceanographic barriers to dispersal. Thus, a limited gene flow in combination with genetic drift could have shaped the seemingly parallel structure.  相似文献   
99.
Computational models of the musculoskeletal system are prone to design errors. It is possible to create a model that cannot satisfy equilibrium conditions for a set of external loading conditions. A model is ‘loadable’ if there exists a set of muscle forces that can resist an arbitrary applied force within a prescribed range. In this study, a novel mathematical method is introduced to determine whether models are loadable. In addition, an idealised musculoskeletal model is presented in order to develop the theory behind the mathematical method. The method uses the simplex algorithm to determine feasibility of the linear programming problem and can determine loadability for an arbitrary, continuous range of external forces. The method was applied to a three-dimensional model of the shoulder and correctly determined loadability for a range of externally applied forces.  相似文献   
100.
Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号