首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3477篇
  免费   394篇
  国内免费   38篇
  2024年   6篇
  2023年   67篇
  2022年   41篇
  2021年   81篇
  2020年   145篇
  2019年   192篇
  2018年   148篇
  2017年   198篇
  2016年   151篇
  2015年   179篇
  2014年   226篇
  2013年   373篇
  2012年   133篇
  2011年   147篇
  2010年   123篇
  2009年   181篇
  2008年   172篇
  2007年   198篇
  2006年   172篇
  2005年   120篇
  2004年   112篇
  2003年   102篇
  2002年   99篇
  2001年   65篇
  2000年   44篇
  1999年   59篇
  1998年   55篇
  1997年   57篇
  1996年   41篇
  1995年   40篇
  1994年   26篇
  1993年   25篇
  1992年   30篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   5篇
排序方式: 共有3909条查询结果,搜索用时 78 毫秒
131.
Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal–distal (P–D) axis by the Dachsous‐Fat‐Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P–D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.  相似文献   
132.
Abstract

Accelerating the mortality of stoats (Mustela erminea) using biological agents, or reducing their fertility using chemosterilants or biological agents, are increasingly seen as more sustainable and more humane than trapping and poisoning. Obligate delayed implantation in fertilised female stoats of all ages allows 10–11 months for an applied biological agent or chemosterilant to interfere with gestation. Two chemosterilants (cabergoline and mifepristone) disrupt pregnancy in some species and may be effective on stoats, although they are not species‐specific and are probably more expensive than poisoning. For the longer term, more recent fertility control research has explored potentially more species‐specific options for other species based on inducing an immune response to an animal's own reproductive hormones, gametes, or products from embryos. Conception will be difficult to disrupt in stoats because females are sexually mature and are mated in the nest during a short period before they are weaned. A large research effort will be required to determine which of the immunosterilants being developed could be suitable candidates for stoat control. There are fewer options apparent for using biological agents to increase stoat mortality, although species‐specific strains of canine distemper virus may be effective against stoats.

The greatest impediment to controlling stoat fertility will be effective delivery of sterilants. For the foreseeable future, it will probably be necessary to rely on baits, but they are unlikely to put all target stoats at risk, and will be incapable of delivery over larger scales than at present.

Before undertaking expensive field trials and development of anti‐fertility and biological agents, the effects of putative compensatory changes in demographics that may be associated with changes in stoat density should be modelled to see if the sterilisation and mortality rates that are required to achieve a given level of population control are realistic targets. Also, population control should be defined in terms of accrued benefit for wildlife by establishing the relationships between stoat densities and the viability of prey populations.

Biological control of fertility or mortality may never be suitable as stand‐alone control options for stoats, particularly when some native fauna survive only if stoats are reduced to very low densities. Biological control may have greater potential when integrated with conventional control.  相似文献   
133.

The discussion of the age of some South American Late Cretaceous fossil vertebrate localities by Van Valen led this author to admit the possible persistence of Dinosaurs at the base of the Paleocene. Van Valen's arguments resting on the selachians are reviewed and it can be asserted that the selachian‐bearing localities of the El Molino Formation of Bolivia are Cretaceous and not Tertiary.  相似文献   
134.
Tropical papaya (Carica papaya) and mountain papaya (Vasconcellea pubescens) fruits are characterised for their strong and particular aroma. The aroma of both fruits is different and dominated by esters, which are synthesised by alcohol acyltransferases (AATs). The ability to produce esters is contrasting, V. pubescens (VpAAT1) being a very active enzyme towards the production of benzyl acetate, whereas C. papaya (CpAAT1) is more active towards the production of ethyl butanoate and methyl butanoate, but not benzyl acetate. In order to understand the mechanism of action at the molecular level, the structural model of CpAAT1 protein was built by comparative modelling. Conformational interaction between the protein and several ligands was carried out by molecular docking. CpAAT1 structure showed two domains connected by a large crossover loop, with a solvent channel in the centre of the structure. CpAAT1 and VpAAT1 proteins showed similar 3D structures, including their catalytic sites, but their solvent channels showed differences in size and shape. CpAAT1 solvent channel is larger, in agreement with its higher selectivity for large acyl-CoA substrates. In addition, the most favourably predicted substrate orientation in CpAAT1 was observed for methanol and butanoyl-CoA, showing a perfect coincidence with the high production rate of methyl butanoate of C. papaya fruit.  相似文献   
135.
136.
Flavoenzymes have been extensively studied for their structural and mechanistic properties because they find potential application as industrial biocatalysts. They are attractive for biocatalysis because of the selectivity, controllability and efficiency of their reactions. Some of these enzymes catalyse the oxidative modification of protein substrates. Among them oxygenases (monoxoygenases and dioxygenases) are of special interest because they are highly entantio as well as regio-selective and can be used for oxyfunctionalisation. Dioxygenase enzymes catalyse oxygenation reactions in which both di-oxygen atoms are incorporated into the product. A dioxygenase enzyme purified from Aspergillus fumigatus MC8 was subjected to protein digestion followed by peptide sequencing. The sequence analysis of the peptide fragments resulted in identifying its match with that of an extracellular dioxygenase sequence from the same species of fungus existing in the protein database. The sequence was submitted to protein homology/analogy recognition engine online server for homology modelling and the 3D structure was predicted. Subsequently, the in silico studies of the enzyme–substrate (protein–ligand) interaction were carried out by using the method of molecular docking simulations wherein the modelled dioxygenase enzyme (protein) was docked with the substrates (ligands), catechin and epicatechin.  相似文献   
137.
Sigma-1 (σ1) affinities of methyl 2-(aminomethyl)-1-phenylcyclopropane-1-carboxylate (MAPCC) derivatives were modelled by the genetic algorithm with linear assignment of hypermolecular alignment of datasets (GALAHAD) and the comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) methods. GALAHAD was used for deriving the 3D pharmacophore pattern that encompasses the most potent σ1 ligands within this series. Five MAPCC derivatives with a high σ1 affinity were used for deriving this model. The obtained model included a nitrogen atom, the hydrophobes and the hydrogen bond acceptor features; it was able to identify other potent σ1 ligands. On the other hand, CoMFA and CoMSIA methods were used for deriving quantitative structure–activity relationship (QSAR) models. All QSAR models were trained with 17 compounds, after which they were evaluated for predictive ability with additional five compounds. The best QSAR model was obtained by using CoMSIA, including steric, electrostatic and hydrophobic fields, and had a good predictive quality according to both internal and external validation criteria. In general, the models described herein provide meaningful information relevant for the rational design of new σ1 ligands.  相似文献   
138.
The preparation of molecularly imprinted polymers (MIPs) involves the polymerisation of functional monomers in the presence of template molecules. 5,7-Dimethoxycoumarin (DMC) was found to be a structural analogue for aflatoxin B1 (AB1) and serves as its substitute in a grafting solution for the MIP synthesis. It was found that both methacrylic acid and allylamine are functional monomers which could provide a similar binding towards AB1 and DMC.  相似文献   
139.
140.
Cystatins are extensively studied cysteine protease inhibitors, found in wide range of organisms with highly conserved structural folds. S-type of cystatins is well known for their abundance in saliva, high selectivity and poorer activity towards host cysteine proteases in comparison to their immediate ancestor cystatin C. Despite more than 90% sequence similarity, the members of this group show highly dissimilar binding affinity towards papain. Cystatin M/E is a potent inhibitor of legumain and papain like cysteine proteases and recognized for its involvement in skin barrier formation and potential role as a tumor suppressor gene. However, the structures of these proteins and their complexes with papain or legumain are still unknown. In the present study, we have employed computational methods to get insight into the interactions between papain and cystatins. Three-dimensional structures of the cystatins are generated by homology modelling, refined with molecular dynamics simulation, validated through numerous web servers and finally complexed with papain using ZDOCK algorithm in Discovery Studio. A high degree of shape complementarity is observed within the complexes, stabilized by numerous hydrogen bonds (HB) and hydrophobic interactions. Using interaction energy, HB and solvent accessible surface area analyses, we have identified a series of key residues that may be involved in papain–cystatin interaction. Differential approaches of cystatins towards papain are also noticed which are possibly responsible for diverse inhibitory activity within the group. These findings will improve our understanding of fundamental inhibitory mechanisms of cystatin and provide clues for further research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号