首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67371篇
  免费   4714篇
  国内免费   3805篇
  2024年   68篇
  2023年   778篇
  2022年   1365篇
  2021年   1628篇
  2020年   1501篇
  2019年   2025篇
  2018年   2002篇
  2017年   1553篇
  2016年   1696篇
  2015年   2230篇
  2014年   3477篇
  2013年   4794篇
  2012年   2440篇
  2011年   3380篇
  2010年   2736篇
  2009年   3463篇
  2008年   3717篇
  2007年   3699篇
  2006年   3437篇
  2005年   3331篇
  2004年   2975篇
  2003年   2649篇
  2002年   2470篇
  2001年   1617篇
  2000年   1385篇
  1999年   1511篇
  1998年   1523篇
  1997年   1284篇
  1996年   1059篇
  1995年   1171篇
  1994年   1092篇
  1993年   952篇
  1992年   868篇
  1991年   643篇
  1990年   535篇
  1989年   500篇
  1988年   492篇
  1987年   458篇
  1986年   375篇
  1985年   451篇
  1984年   594篇
  1983年   438篇
  1982年   442篇
  1981年   290篇
  1980年   232篇
  1979年   207篇
  1978年   112篇
  1977年   64篇
  1976年   59篇
  1975年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The separation of peptides and proteins by reverse-phase high-performance liquid chromatography with cyanopropylsilyl and large-pore propylsilyl supports, together with aqueous trifluoroacetic acid/acetonitrile gradients, was studied. Operating parameters (trifluoroacetic acid concentration, flow rate, and gradient slope) were evaluated using different enzymatic digests of horse cytochrome c and bovine serum albumin. Peptides ranging in size from five amino acids to 68 kDa could be separated on the propylsilyl column in a single chromatographic run. The cyanopropylsilyl column is suitable as a supplement to the use of the large-pore column for medium size (5-20 amino acids) peptides. The chromatographic supports and conditions presented here offer a simple, sensitive, and rapid separation system for a wide size range of peptides and proteins. They extend the versatility of separation methodology for these molecules.  相似文献   
42.
We investigated the effects of near-infrared irradiation on the photoconversion of Chenopodium album water-soluble chlorophyll-binding protein (CaWSCP) in the presence of sodium hydrosulfite and found a further photoconversion from CP742 to CP763, a novel form of CaWSCP. Interestingly, one-third of the absorption peak at 668 nm was recovered in CP763, but re-irradiation under oxidative conditions eliminated the photo convertibility of CaWSCP.  相似文献   
43.
The factors determining the onset and extent of reconstructive denaturation of proteins were considered by comparing circular dichroism (CD) data of seven proteins and previously published findings. The effects of sodium dodecyl sulfate (SDS) on the conformation of the following proteins were tested: lysozyme, the mitogens fromPhytolacca americana (fractions Pa2 and Pa4), lectin fromWistaria floribunda, ovine lutropin, a Bence Jones protein, and histone H2B. While the helix content of lysozyme was raised by SDS slightly, in the Bence Jones protein andW. floribunda lectin it increased from near zero to about 25–30%. In histone H2B the helix content was raised by SDS even to about 48%. However, no clear indication of helix formation could be observed in the mitogens and lutropin, even at low pH or 2.0–2.5. The tertiary structure of the proteins was perturbed by SDS. It was concluded that the reorganization of secondary structure of the proteins was favored by the following factors: (1) presence of helicogenic amino acid sequences in the protein, (2) availability of positively charged sites of the basic amino acids for interactions with the dodecyl ion, (3) absence of a large surplus of negatively charged sites on the surface of protein, and (4) absence of extensive disulfide cross-linking within the macromolecule. Both hydrophobic and electrostatic interactions occur in reconstructive denaturation, and the newly formed helices are stabilized by hydrophobic shielding by the alkyl chains of the alkyl sulfate.  相似文献   
44.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
45.
46.
RegB is involved in the control of the phage T4 life cycle. It inactivates the phage early mRNAs when their translation is no more required. We determined its structure and identified residues involved in substrate binding. For this, all backbone and 90% of side-chain resonance frequencies were assigned.  相似文献   
47.
The first 12 NH2-terminal amino acids of the Pseudomonas putida putidaredoxin reductase were shown to be Met-Asn-Ala-Asn-Asp-Asn-Val-Val-Ile-Val-Gly-Thr. Comparison of these data with the DNA sequence of the BamHI-HindIII 197-base fragment derived from the PstI 2.2-kb fragment obtained from the P. putida plasmid showed that the putidaredoxin reductase gene was downstream from the cytochrome P-450 gene and the intergenic region had the 24-nucleotide sequence TAAACACATGGGAGTGCGTGCTAA. The Shine-Dalgarno sequence GGAG was detected in this region. The initiating triplet for the reductase gene was GTG, which normally codes for valine, but in the initiating codon position codes for methionine. From the amino acid sequence and X-ray data comparisons with other flavoproteins, what appears to be the AMP binding region of the FAD can be recognized in the NH2-terminal portion of the reductase involving residues 5–35.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   
48.
The HERV‐W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV‐W–derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin‐1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV‐W members is highly desirable. A peptide nucleic acid (PNA)–mediated technique for the discrimination between multiple sclerosis‐associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis‐associated retrovirus (MSRV) template, shows high selective potential. Single‐stranded DNA binding protein facilitates the PNA‐mediated, sequence‐specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single‐stranded DNA‐specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV‐W env sequences have been evaluated. We believe that PNA/single‐stranded DNA binding protein–based application has the potential to selectively discriminate particular HERV‐W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho‐neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto‐immunologic background (psoriasis and lupus erythematosus).  相似文献   
49.
Proteolysis of the hydroxylase component of soluble methane monooxygenase (MMO) with trypsin yielded a protein which retained 50% activity in a standard MMO assay. In an H2O2-driven assay, in which H2O2 replaced two of the protein components, NADH and O2 used in the standard assay, the proteolysed hydroxylase retained full activity for ethane, propane and propene, but had a 2–3 fold increase with methane as substrate. Several crosslinking reagents have been tested for their ability to stabilise the proteolysed form of the hydroxylase. Using polyoxyethylene bis(imidazolyl carbonyl) (Mr 3350) as the crosslinking agent, increased thermostability of the hydroxylase was observed. Activated methoxypolyethylene glycol (Mr 5000) was used to modify the hydroxylase which was now soluble in organic solvents as well as water and could be activated by H2O2. The glycol-modified hydroxylase functioned well in organic solvents in the catalysis of propene oxidation.  相似文献   
50.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号