首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  2015年   1篇
  2013年   5篇
  2010年   1篇
  2008年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
31.
We describe the simplification of 13C–13C correlation spectra obtained from a microcrystalline protein sample expressed on a growth medium of 10% fully 13C labeled glucose diluted in 90% natural abundance glucose as compared to a fully labeled sample. Such a labeling scheme facilitates the backbone and side-chain resonance assignment of Phe, Tyr, His, Asp, Asn, Ile, Lys and Pro and yields an unambiguous stereospecific assignment of the valine Cγ1, Cγ2 13C resonances and of Leucine Cδ2.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
32.
Enzymes in stereoselective pharmacokinetics of endogenous substances.   总被引:1,自引:0,他引:1  
The use of enzymes to assay individual components of the L-carnitine family in pharmaceuticals, foodstuffs, and biological fluids with various forms of detection is reviewed. The most useful enzyme in the assay of compounds of the L-carnitine family is carnitine acetyl transferase (CAT), which catalyses the reversible interconversion of L-carnitine and its short-chain acyl esters. CAT can be used in one or more coupled reactions combined with U.V., or radiolabelled detection, or combined with HPLC, allowing, enantioselective, structurally specific, and, in the case of radiolabelled tracing, highly sensitive assays to be carried out. When compared with chromatographic separation of enantiomers or diastereoisomers, enantioselective enzyme mediated assays may be cheaper, more sensitive, and simpler, but they do not allow the nonpreferred isomer to be assayed. Consequently, they are appropriate for the specific assay of endogenous enantiomeric substrates of the enzyme concerned, in biological samples. The analysis of the other enantiomer in raw materials or in pharmaceuticals must be more properly approached by enantioselective chromatographic methods.  相似文献   
33.
The steady-state pharmacokinetics in serum and urine of the enantiomers of citalopram and its metabolites, demethylcitalopram (DCT) and didemethylcitalopram (DDCT), were investigated after multiple doses of rac-citalopram for 21 consecutive days (40 mg per day) to healthy human subjects who were extensive metabolisers of sparteine and mephenytoin. Comparable pharmacokinetic variability was noted for (+)-(S)-, (−)-(R)- and rac-citalopram. Enantiomeric (S/R) serum concentration ratios for citalopram were always less than unity and were constant during the steady-state dosing interval. A modest, but statistically significant, stereoselectivity in the disposition of citalopram and its two main metabolites was observed. Serum levels of the (+)-(S)-enantiomers of citalopram, DCT, and DDCT throughout the steady-state dosing interval investigated were 37 ± 6%, 42 ± 3% and 32 ± 3%, respectively, of their total racemic serum concentrations. The (+)-(S)-enantiomers of citalopram, DCT, and DDCT were eliminated faster than their antipodes. For (−)-(R)- and (+)-(S)-citalopram, respectively, the serum t½ averaged 47 ± 11 and 35 ± 4 h and AUCss averaged 4,193 ± 1,118 h · nmol/l and 2,562 ± 1,190 h · nmol/l. The observed enantiospecificities were apparently more related to clearance, rather than to distributional mechanisms. Chirality 9:686–692, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
34.
An (R)-specific carbonyl reductase from Candida parapsilosis CCTCCM203011 (CprCR) was shown to catalyze the asymmetric reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol (PED), which is a critical chiral building block in organic synthesis. The gene (rcr) encoding CprCR was cloned based on the amino acid sequences of tryptic fragments of the enzyme. Sequence analysis revealed that rcr is comprised of 1008 nucleotides encoding a 35 977 Da polypeptide, and shares similarity to proteins of the medium-chain dehydrogenase/reductase (MDR) superfamily. Recombinant rcr expressed in Escherichia coli showed a specific 2-hydroxyacetophenone-reducing activity. Using rcr expressing cells, (R)-PED was obtained by asymmetric reduction, which is complementary in enantiomeric configuration to (S)-PED obtained by using whole cells of C. parapsilosis. After optimization of reaction conditions, (R)-PED was produced at 95.5% enantiomeric excess with a yield of 92.6% when isopropanol was used for cofactor regeneration.  相似文献   
35.
An (R)-1-phenyl-1,3-propanediol-producing enzyme was purified from Trichosporon fermentans AJ-5152. It was NADPH-dependent and converted 3-hydroxy-1-phenylpropane-1-one (HPPO) to (R)-1-phenyl-1,3-propanediol [(R)-PPD] with anti-Prelog’s specificity. It showed maximum activity at pH 7.0 and 40 °C. Its K m and V max values toward HPPO were 20.1 mM and 3.4 μmol min?1 mg protein?1 respectively. The relative molecular weight of the enzyme was estimated to be 68,000 on gel filtration and 32,000 on SDS-polyacrylamide gel electrophoresis. An (R)-PPD-producing reaction using the (R)-PPD-producing enzyme and an NADPH recycling system was carried out by successive feeding of HPPO. A total (R)-PPD yield of 8.9 g/l was produced in 16 h. The molar yield was 76%, and the optical purity of the (R)-PPD produced was over 99% e.e.  相似文献   
36.
A novel methodology for stereospecific NMR assignments of methyl (CH3) groups of Val and Leu residues in fractionally 13C-labeled proteins is presented. The approach is based on selective `unlabeling' of specific amino acids in proteins while fractionally 13C-labeling the rest. A 2D [13C-1H] HSQC spectrum recorded on such a sample is devoid of peaks belonging to the `unlabeled' amino acid residues. Such spectral simplification aids in unambiguous stereospecific assignment of diastereotopic CH3 groups in Val and Leu residues in large proteins. This methodology has been demonstrated on a 15 kDa calcium binding protein from Entamoeba histolytica (Eh-CaBP).  相似文献   
37.
38.
A Lyophilized preparation of L-2-halo acid dehalogenase was not only stable but also catalytically active in anhydrous dimethyl sulfoxide, toluene, and other organic solvents. 2-Halo acids with long alkyl (C(5)-C(16)) or aromatic (phenyl and benzyl) side chains were inert in water but dehalogenated effectively in anhydrous dimethyl sulfoxide by the lyophilized enzyme. Long chain 2-haloalkanoic acids such as 2-bromohexadecanoic acids were better as substrate than short-chain halo acids (e.g., 2-chloropropanoic acid). The dehalogenation proceed with inversion of C(2) configuration to produce the corresponding (2R)-2-hydroxy acids in anhydrous dimethyl sulfoxide in the same way as found in water.  相似文献   
39.
A new synthesis of non-racemic halothane (1-bromo-1-chloro-2,2,2-trifluoroethane) is reported. The stereospecificity of the key reaction, decarboxylation of a salt of optically enriched 1-bromo-1-chloro-2,2,2-trifluoropropionic acid to give halothane, is shown to be highly dependent on the nature of the cation. When the cation is trialkylammonium, a high level of stereospecificity is observed. © 1996 Wiley-Liss, Inc.  相似文献   
40.
The purposes of this work were (1) to develop a high performance liquid chromatographic (HPLC) assay for the enantiomers of thalidomide in blood, (2) to study their inversion and degradation in human blood, and (3) to study the pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide after oral administration of the separate enantiomers or of the racemate to healthy male volunteers. The enantiomers of thalidomide were determined by direct resolution on a tribenzoyl cellulose column. Mean rate constants of chiral inversion of (+)-(R)-thalidomide and (?)-(S)-thalidomide in blood at 37°C were 0.30 and 0.31 h?1, respectively. Rate constants of degradation were 0.17 and 0.18 h?1. There was rapid interconversion in vivo in humans, the (+)-(R)-enantiomer predominating at equilibrium. The pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide could be characterized by means of two one-compartment models connected by rate constants for chiral inversion. Mean rate constants for in vivo inversion were 0.17 h?1 (R to S) and 0.12 h?1 (S to R) and for elimination 0.079 h?1 (R) and 0.24 h?1 (S), i.e., a considerably faster rate of elimination of the (?)-(S)-enantiomer. Putative differences in therapeutic or adverse effects between (+)-(R)- and (?)-(S)-thalidomide would to a large extent be abolished by rapid interconversion in vivo. © 1995 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号