首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10085篇
  免费   939篇
  国内免费   477篇
  2024年   14篇
  2023年   226篇
  2022年   332篇
  2021年   606篇
  2020年   618篇
  2019年   757篇
  2018年   635篇
  2017年   370篇
  2016年   335篇
  2015年   548篇
  2014年   888篇
  2013年   860篇
  2012年   588篇
  2011年   689篇
  2010年   528篇
  2009年   564篇
  2008年   514篇
  2007年   493篇
  2006年   375篇
  2005年   317篇
  2004年   248篇
  2003年   180篇
  2002年   156篇
  2001年   86篇
  2000年   54篇
  1999年   45篇
  1998年   55篇
  1997年   40篇
  1996年   50篇
  1995年   34篇
  1994年   32篇
  1993年   28篇
  1992年   41篇
  1991年   29篇
  1990年   18篇
  1989年   11篇
  1988年   15篇
  1987年   17篇
  1986年   13篇
  1985年   10篇
  1984年   14篇
  1983年   14篇
  1982年   14篇
  1981年   11篇
  1980年   7篇
  1978年   5篇
  1976年   2篇
  1974年   4篇
  1971年   2篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.  相似文献   
162.
163.
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.  相似文献   
164.
Pneumonia is the inflammation of the lungs and it is the world’s leading cause of death for children under 5 years of age.The latest coronavirus disease 2019(COVID-19)virus is a prominent culprit to severe pneumonia.With the pandemic running rampant for the past year,more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm.Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after.Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity,thus significantly alleviating the severe clinical conditions of pneumonia.In recent clinical trials,mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality;positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a nextgeneration therapy to counter future challenges.  相似文献   
165.
Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance.Several rodent models for both IR and T2D are being used to study the disease pathogenesis;however,these models cannot recapitulate all the aspects of this complex disorder as seen in each individual.Human pluripotent stem cells(hPSCs)can overcome the hurdles faced with the classical mouse models for studying IR.Human induced pluripotent stem cells(hiPSCs)can be generated from the somatic cells of the patients without the need to destroy a human embryo.Therefore,patient-specific hiPSCs can generate cells genetically identical to IR individuals,which can help in distinguishing between genetic and acquired defects in insulin sensitivity.Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR.Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes.In this review,we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes.Also,we highlight the use of hPSCs to understand the mechanisms underlying the development of IR.  相似文献   
166.
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: β-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   
167.
目的:探讨人脐带间充质干细胞(UC-MSC)治疗肝纤维化的可行性。方法:采用CCL腹腔注射小鼠制备肝纤维化模型,分别于第4、10周给予尾静脉注射移植UC-MSC进行治疗,检测治疗后血清学指标的改变和病理变化,观察UC-MSC对肝纤维化的疗效。结果:4周和10周进行治疗均可改善肝功能,减轻纤维化程度。结论:UC-MSC对CCl4诱导的肝纤维化具有一定的疗效。  相似文献   
168.

Background

Wound healing is a complex biologic process that involves the integration of inflammation, mitosis, angiogenesis, synthesis, and remodeling of the extracellular matrix. However, some wounds fail to heal properly and become chronic. Although some simulated chronic wound models have been established, an efficient approach to treat chronic wounds in animal models has not been determined. The aim of this study was to develop a modified rat model simulating the chronic wounds caused by clinical radiation ulcers and examine the treatment of chronic wounds with adipose-derived stem cells.

Results

Sprague–Dawley rats were irradiated with an electron beam, and wounds were created. The rats received treatment with adipose-derived stem cells (ASCs), and a wound-healing assay was performed. The wound sizes after ASC treatment for 3 weeks were significantly smaller compared with the control condition (p < 0.01). Histological observations of the wound edge and immunoblot analysis of the re-epithelialization region both indicated that the treatment with ASCs was associated with the development of new blood vessels. Cell-tracking experiments showed that ASCs were colocalized with endothelial cell markers in ulcerated tissues.

Conclusions

We established a modified rat model of radiation-induced wounds and demonstrated that ASCs accelerate wound-healing.  相似文献   
169.
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.  相似文献   
170.
One of the crucial factors for short- and long-term clinical success of total hip arthroplasty cementless implants is primary stability. Indeed, motion at the bone–implant interface above 40 μm leads to partial bone ingrowth, while motion exceeding 150 μm completely inhibits bone ingrowth. The aim of this study was to investigate the effect of two cementless femoral stem designs with different lengths on the primary stability. A finite element model of a composite Sawbones® fourth generation, implanted with five lengths of the straight prosthesis design and four lengths of the curved prosthesis design, was loaded with hip joint and abductor forces representing two physiological activities: fast walking and stair climbing. We found that reducing the straight stem length from 146 to 54 mm increased the average micromotion from 17 to 52 μm during fast walking, while the peak value increased from 42 to 104 μm. With the curved stem, reducing length from 105 to 54 mm increased the average micromotion from 10 to 29 μm, while the peak value increased from 37 to 101 μm. Similar findings are obtained for stair climbing for both stems. Although the present study showed that femoral stem length as well as stem design directly influences its primary stability, for the two femoral stems tested, length could be reduced substantially without compromising the primary stability. With the aim of minimising surgical invasiveness, newer femoral stem design and currently well performing stems might be used with a reduced length without compromising primary stability and hence, long-term survivorship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号