首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10069篇
  免费   940篇
  国内免费   477篇
  2024年   14篇
  2023年   226篇
  2022年   317篇
  2021年   606篇
  2020年   618篇
  2019年   757篇
  2018年   635篇
  2017年   370篇
  2016年   335篇
  2015年   548篇
  2014年   888篇
  2013年   860篇
  2012年   588篇
  2011年   689篇
  2010年   528篇
  2009年   564篇
  2008年   514篇
  2007年   493篇
  2006年   375篇
  2005年   317篇
  2004年   248篇
  2003年   180篇
  2002年   156篇
  2001年   86篇
  2000年   54篇
  1999年   45篇
  1998年   55篇
  1997年   40篇
  1996年   50篇
  1995年   34篇
  1994年   32篇
  1993年   28篇
  1992年   41篇
  1991年   29篇
  1990年   18篇
  1989年   11篇
  1988年   15篇
  1987年   17篇
  1986年   13篇
  1985年   10篇
  1984年   14篇
  1983年   14篇
  1982年   14篇
  1981年   11篇
  1980年   7篇
  1978年   5篇
  1976年   2篇
  1974年   4篇
  1971年   2篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
There is accumulating evidence of an increased incidence of tendon disorders in people with diabetes mellitus. Diabetic tendinopathy is an important cause of chronic pain, restricted activity, and even tendon rupture in individuals. Tenocytes and tendon stem/progenitor cells (TSPCs) are the dominant cellular components associated with tendon homeostasis, maintenance, remodeling, and repair. Some previous studies have shown alterations in tenocytes and TSPCs in high glucose or diabetic conditions that might cause structural and functional variations in diabetic tendons and even accelerate the development and progression of diabetic tendinopathy. In this review, the biomechanical properties and histopathological changes in diabetic tendons are described. Then, the cellular and molecular alterations in both tenocytes and TSPCs are summarized, and the underlying mechanisms involved are also analyzed. A better understanding of the underlying cellular and molecular pathogenesis of diabetic tendinopathy would provide new insight for the exploration and development of effective therapeutics.  相似文献   
133.
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.  相似文献   
134.
BACKGROUNDAs the third most abundant element, aluminum is widespread in the environment. Previous studies have shown that aluminum has a neurotoxic effect and its exposure can impair neuronal development and cognitive function.AIMTo study the effects of aluminum on epigenetic modification in neural stem cells and neurons. METHODSNeural stem cells were isolated from the forebrain of adult mice. Neurons were isolated from the hippocampi tissues of embryonic day 16-18 mice. AlCl3 at 100 and 200 μmol/L was applied to stem cells and neurons. RESULTSAluminum altered the differentiation of adult neural stem cells and caused apoptosis of newborn neurons while having no significant effects on the proliferation of neural stem cells. Aluminum application also significantly inhibited the dendritic development of hippocampal neurons. Mechanistically, aluminum exposure significantly affected the levels of DNA 5-hydroxy-methylcytosine, 5-methylcytosine, and N6-methyladenine in stem cells and neurons. CONCLUSIONOur findings indicate that aluminum may regulate neuronal development by modulating DNA modifications.  相似文献   
135.
136.
BACKGROUNDTo date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.AIMTo investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.METHODSThe cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.RESULTS6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.CONCLUSION6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.  相似文献   
137.
Coronavirus disease-2019 (COVID-19) has affected more than 200 countries worldwide. This disease has hugely affected healthcare systems as well as the economy to an extent never seen before. To date, COVID-19 infection has led to about 165000 deaths in 150 countries. At present, there is no specific drug or efficient treatment for this disease. In this analysis based on evidential relationships of the biological characteristics of MSCs, especially umbilical cord (UC)-derived MSCs as well as the first clinical trial using MSCs for COVID-19 treatment, we discuss the use of UC-MSCs to improve the symptoms of COVID-19 in patients.  相似文献   
138.
BACKGROUNDImpaired wound healing can be associated with different pathological states. Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide. Mesenchymal stem cells (MSCs) possess the ability to regenerate tissues by secreting factors involved in promoting cell migration, proliferation and differentiation, while suppressing immune reactions. Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIMTo enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODSHuman umbilical cord MSCs (hU-MSCs) were isolated and characterized by surface markers, CD105, vimentin and CD90. For preconditioning, hU-MSCs were treated with isorhamnetin after selection of the optimized concentration (5 µmol/L) by cytotoxicity analysis. The migration potential of these MSCs was analyzed by the in vitro scratch assay. The healing potential of normal, and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound. Normal, and preconditioned MSCs (IH + MSCs) were transplanted after 72 h of burn injury and observed for 2 wk. Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTSThe scratch assay analysis showed a significant reduction in the scratch area in the case of IH + MSCs compared to the normal untreated MSCs at 24 h, while complete closure of the scratch area was observed at 48 h. Histological analysis showed reduced inflammation, completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH + MSCs. Gene expression analysis was time dependent and more pronounced in the case of IH + MSCs. Interleukin (IL)-1β, IL-6 and Bcl-2 associated X genes showed significant downregulation, while transforming growth factor β, vascular endothelial growth factor, Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound, showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSIONPreconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation, and improving tissue architecture and wound healing. The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.  相似文献   
139.
140.
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号