首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11634篇
  免费   991篇
  国内免费   516篇
  2024年   15篇
  2023年   247篇
  2022年   340篇
  2021年   656篇
  2020年   640篇
  2019年   788篇
  2018年   667篇
  2017年   397篇
  2016年   357篇
  2015年   590篇
  2014年   960篇
  2013年   952篇
  2012年   644篇
  2011年   754篇
  2010年   582篇
  2009年   625篇
  2008年   574篇
  2007年   584篇
  2006年   428篇
  2005年   381篇
  2004年   288篇
  2003年   222篇
  2002年   199篇
  2001年   127篇
  2000年   89篇
  1999年   72篇
  1998年   84篇
  1997年   81篇
  1996年   89篇
  1995年   66篇
  1994年   57篇
  1993年   58篇
  1992年   62篇
  1991年   52篇
  1990年   42篇
  1989年   38篇
  1988年   32篇
  1987年   26篇
  1986年   21篇
  1985年   30篇
  1984年   37篇
  1983年   29篇
  1982年   37篇
  1981年   26篇
  1980年   26篇
  1979年   11篇
  1978年   19篇
  1977年   8篇
  1976年   8篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.

Background

Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress.

Methods

hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons.

Results

Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved.

Conclusion

hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads.

General significance

Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.  相似文献   
982.
Background and Aims Floral spurs are hollow, tubular outgrowths that typically conceal nectar. By their involvement in specialized pollinator interactions, spurs have ecological and evolutionary significance, often leading to speciation. Despite their importance and diversity in shape and size among angiosperm taxa, detailed investigations of the mechanism of spur development have been conducted only recently.Methods Initiation and growth of the nectar-yielding petal spur of Centranthus ruber ‘Snowcloud’ was investigated throughout seven stages, based on bud size and developmental events. The determination of the frequency of cell division, quantified for the first time in spurs, was conducted by confocal microscopy following 4'',6-diamidino-2-phenylindole (DAPI) staining of mitotic figures. Moreover, using scanning electron microscospy of the outer petal spur surface unobstructed by trichomes, morphometry of epidermal cells was determined throughout development in order to understand the ontogeny of this elongate, hollow tube.Key Results Spur growth from the corolla base initially included diffuse cell divisions identified among epidermal cells as the spur progressed through its early stages. However, cell divisions clearly diminished before a petal spur attained 30 % of its final length of 4·5 mm. Thereafter until anthesis, elongation of individual cells was primarily responsible for the spur’s own extension. Consequently, a prolonged period of anisotropy, wherein epidermal cells elongated almost uniformly in all regions along the petal spur’s longitudinal axis, contributed principally to the spur’s mature length.Conclusions This research demonstrates that anisotropic growth of epidermal cells – in the same orientation as spur elongation – chiefly explains petal spur extension in C. ruber. Representing the inaugural investigation of the cellular basis for spur ontogeny within the Euasterids II clade, this study complements the patterns in Aquilegia species (order Ranunculales, Eudicots) and Linaria vulgaris (order Lamiales, Euasterids I), thereby suggesting the existence of a common underlying mechanism for petal spur ontogeny in disparate dicot lineages.  相似文献   
983.
The plasticity of root architecture is crucial for plants to acclimate to unfavourable environments including low nitrogen (LN) stress. How maize roots coordinate the growth of axile roots and lateral roots (LRs), as well as longitudinal and radial cell behaviours in response to LN stress, remains unclear. Maize plants were cultivated hydroponically under control (4 mm nitrate) and LN (40 μm ) conditions. Temporal and spatial samples were taken to analyse changes in the morphology, anatomical structure and carbon/nitrogen (C/N) ratio in the axile root and LRs. LN stress increased axile root elongation, reduced the number of crown roots and decreased LR density and length. LN stress extended cell elongation zones and increased the mature cell length in the roots. LN stress reduced the cell diameter and total area of vessels and increased the amount of aerenchyma, but the number of cell layers in the crown root cortex was unchanged. The C/N ratio was higher in the axile roots than in the LRs. Maize roots acclimate to LN stress by optimizing the anatomical structure and N allocation. As a result, axile root elongation is favoured to efficiently find available N in the soil.  相似文献   
984.
《Cell calcium》2015,58(5-6):321-336
The quintessential property of developing cardiomyocytes is their ability to beat spontaneously. The mechanisms underlying spontaneous beating in developing cardiomyocytes are thought to resemble those of adult heart, but have not been directly tested. Contributions of sarcoplasmic and mitochondrial Ca2+-signaling vs. If-channel in initiating spontaneous beating were tested in human induced Pluripotent Stem cell-derived cardiomyocytes (hiPS-CM) and rat Neonatal cardiomyocytes (rN-CM). Whole-cell and perforated-patch voltage-clamping and 2-D confocal imaging showed: (1) both cell types beat spontaneously (60–140/min, at 24 °C); (2) holding potentials between −70 and 0 mV had no significant effects on spontaneous pacing, but suppressed action potential formation; (3) spontaneous pacing at −50 mV activated cytosolic Ca2+-transients, accompanied by in-phase inward current oscillations that were suppressed by Na+-Ca2+-exchanger (NCX)- and ryanodine receptor (RyR2)-blockers, but not by Ca2+- and If-channels blockers; (4) spreading fluorescence images of cytosolic Ca2+-transients emanated repeatedly from preferred central cellular locations during spontaneous beating; (5) mitochondrial un-coupler, FCCP at non-depolarizing concentrations (∼50 nM), reversibly suppressed spontaneous pacing; (6) genetically encoded mitochondrial Ca2+-biosensor (mitycam-E31Q) detected regionally diverse, and FCCP-sensitive mitochondrial Ca2+-uptake and release signals activating during INCX oscillations; (7) If-channel was absent in rN-CM, but activated only negative to −80 mV in hiPS-CM; nevertheless blockers of If-channel failed to alter spontaneous pacing.  相似文献   
985.
986.
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro‐environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles.  相似文献   
987.
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation.  相似文献   
988.
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY‐deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy‐induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy‐induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.  相似文献   
989.
Umbilical cord blood (UCB) is of great interest as a source of stem cells for use in cellular therapies. The immunomodulatory effect of mesenchymal stem cells (MSCs) originating from bone marrow, adipose tissue and amniotic membrane has previously been reported. In this study, MSCs were isolated from UCB with the aim of evaluating their immunomodulatory effects on proliferation of PB lymphocytes by two different techniques; namely, 5‐bromo‐2‐deoxyuridine ELISA and a carboxy fluorescein diacetate succinimidyl ester flow cytometric technique. MSCs were isolated from UCB, propagated until Passage four, and then characterized for cell surface markers by flow cytometry and ability to differentiate towards osteocytes and adipocytes. Immunosuppressive effects on PB lymphocytes were examined by co‐culturing mitomycin C‐treated UCB MSCs with mitogen‐stimulated lymphocytes for 72 hr. Thereafter, proliferation of lymphocytes was detected by CFSE flow cytometry and colorimetric ELISA. The titers of cytokines in cell culture supernatant were also assayed to clarify possible mechanisms of immunomodulation. UCB MSCs suppressed mitogen‐stimulated lymphocyte proliferation, which occurs via both cell‐cell contact and cytokine secretion. Titers of transforming growth factor beta and IL 10 increased, whereas that of IFN‐γ decreased in the supernatants of co‐cultures. Thus, UCB MSCs suppress the proliferation of mitogen‐stimulated lymphocytes. However further in vivo studies are required to fully evaluate the immunomodulatory effects of UCB MSCs.  相似文献   
990.
What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time interval for the survivability of the organism. We are studying an organism that demonstrates both properties: the colonial ascidian, Botryllus schlosseri. Botryllus is a member of the Tunicata, the sister group to the vertebrates, and has a number of life history traits which make it an excellent model for studies on aging. First, Botryllus has a colonial life history, and grows by a process of asexual reproduction during which entire bodies, including all somatic and germline lineages, regenerate every week, resulting in a colony of genetically identical individuals. Second, previous studies of lifespan in genetically distinct Botryllus lineages suggest that a direct, heritable basis underlying mortality exists that is unlinked to reproductive effort and other life history traits. Here we will review recent efforts to take advantage of the unique life history traits of B. schlosseri and develop it into a robust model for aging research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号