首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11650篇
  免费   990篇
  国内免费   516篇
  2024年   15篇
  2023年   247篇
  2022年   355篇
  2021年   656篇
  2020年   640篇
  2019年   788篇
  2018年   667篇
  2017年   397篇
  2016年   357篇
  2015年   590篇
  2014年   960篇
  2013年   952篇
  2012年   644篇
  2011年   754篇
  2010年   582篇
  2009年   625篇
  2008年   574篇
  2007年   584篇
  2006年   428篇
  2005年   381篇
  2004年   288篇
  2003年   222篇
  2002年   199篇
  2001年   127篇
  2000年   89篇
  1999年   72篇
  1998年   84篇
  1997年   81篇
  1996年   89篇
  1995年   66篇
  1994年   57篇
  1993年   58篇
  1992年   62篇
  1991年   52篇
  1990年   42篇
  1989年   38篇
  1988年   32篇
  1987年   26篇
  1986年   21篇
  1985年   30篇
  1984年   37篇
  1983年   29篇
  1982年   37篇
  1981年   26篇
  1980年   26篇
  1979年   11篇
  1978年   19篇
  1977年   8篇
  1976年   8篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.  相似文献   
912.
Fusarium wilt caused by Fusarium oxysporum f.sp. melonis (FOM) is a devastating disease of melon worldwide. Pathogenicity tests performed with F. oxysporum isolates obtained from Italian melon‐growing areas allowed to identify thirty‐four FOM isolates and the presence of all four races. The aims of this work were to examine genetic relatedness among FOM isolates by race determination and to perform phylogenetic analyses of identified FOM races including also other formae speciales of F. oxysporum of cucurbits. Results showed that FOM race 1,2 was the most numerous with a total of eighteen isolates, while six and nine isolates were identified as race 0 and 1, respectively, and just one isolate was assigned to race 2. Phylogenetic analysis was performed by random amplified polymorphic DNA (RAPD) profiling and by translation elongation factor‐1α (TEF‐1α) sequencing. The analysis of RAPD profiles separated FOM races into two distinct clades. Clade 1, which included races 0, 1 and 1,2, was further divided into ‘subclade a’ which grouped almost all race 1,2 isolates, and into ‘subclade b’ which included race 0 and 1 isolates. Clade 2 comprised only race 2 isolates. The phylogenetic analysis based on TEF‐1α separated FOM from the other formae speciales of F. oxysporum. Also with TEF‐1α analysis, FOM races 0, 1 and 1,2 isolates grouped in one single clade clearly separated from FOM race 2 isolates which grouped closer to F. oxysporum f.sp. cucumerinum. RAPD technique was more effective than TEF‐1α in differentiating FOM race 1,2 isolates from those belonging to the closely related races 0 and 1. Both phylogenetic analyses supported the close relationship between the three different FOM races which might imply the derivation from one another and the different origin of FOM race 2.  相似文献   
913.
Muscle stem cells (MuSCs, satellite cells) are the major contributor to muscle regeneration. Like most adult stem cells, long-term expansion of MuSCs in vitro is difficult. The in vivo muscle regeneration abilities of MuSCs are quickly lost after culturing in vitro, which prevents the potential applications of MuSCs in cell-based therapies. Here, we establish a system to serially expand MuSCs in vitro for over 20 passages by mimicking the endogenous microenvironment. We identified that the combination of four pro-inflammatory cytokines, IL-1α, IL-13, TNF-α, and IFN-γ, secreted by T cells was able to stimulate MuSC proliferation in vivo upon injury and promote serial expansion of MuSCs in vitro. The expanded MuSCs can replenish the endogenous stem cell pool and are capable of repairing multiple rounds of muscle injuries in vivo after a single transplantation. The establishment of the in vitro system provides us a powerful method to expand functional MuSCs to repair muscle injuries.  相似文献   
914.
915.
《Cryobiology》2015,70(3):442-450
Adipose-derived stem cells (ADSCs), which are an accessible source of adult stem cells with capacities for self-renewal and differentiation into various cell types, have a promising potential in tissue engineering and regenerative medicine strategies. To meet the clinical demand for ADSCs, cryopreservation has been applied for long-term ADSC preservation. To optimize the addition, removal, freezing, and thawing of cryoprotective agents (CPAs) applied to ADSCs, we measured the transport properties of porcine ADSCs (pADSCs). The cell responses of pADSCs to hypertonic phosphate-buffered saline and common CPAs, dimethyl sulfoxide, ethylene glycol, and glycerol were measured by a microperfusion system at temperatures of 28, 18, 8, and −2 °C. We determined the osmotically inactive cell volume (Vb), hydraulic conductivity (Lp), and CPA permeability (Ps) at various temperatures in a two-parameter model. Then, we quantitatively analyzed the effect of temperature on the transport properties of the pADSC membrane. Biophysical parameters were used to optimize CPA addition, removal, and freezing processes to minimize excessive shrinkage of pADSCs during cryopreservation. The biophysical properties of pADSCs have a great potential for effective optimization of cryopreservation procedures.  相似文献   
916.
The relationship between sap flux and stem CO2 efflux was assessed for three mango trees. We observed higher than expected CO2 effluxes at the place of measurement under intermediate sap flux velocities and lower fluxes under high sap flux velocity. This variation disappeared after removing the tree crown.  相似文献   
917.
Various endophytic fungi of native plants and crops are important entomopathogens. The objective of this study was to investigate the entomopathogenic action of Beauveria bassiana (Balsamo) Vuillemin, Metarhizium robertsii (Metchnikoff) Sorokin, and Isaria fumosorosea (Wize) Brown & Smith (all Ascomycota: Hypocreales) against larvae of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae) artificially introduced into Sorghum bicolor L. (Moench) (Poaceae) plants under natural environmental conditions. Sorghum bicolor is an economically important crop cultivated for grain, fiber, forage, and lately for biofuel, and S. nonagrioides is its main pest in Mediterranean areas. Young sorghum plants were inoculated with the entomopathogens by spraying in the field. Plant water status, chlorophyll concentration, photosynthesis, and transpiration were not affected. Thirty days after endophyte establishment, plants were infested with fourth instars of S. nonagrioides. The endophytes prevented 50–70% of larvae from entering stalks. Larval mortality was 70–100% and tunnel lengths were reduced by 60–87%. Larval infestation resulted in reduced electron transport capacity and net photosynthetic rate, which was ameliorated in the presence of I. fumosorosea and reversed by B. bassiana and M. robertsii. The growth of sorghum was unaffected in all treatments during the experimental period. Beauveria bassiana and M. robertsii can protect sweet sorghum from damage induced by S. nonagrioides under natural environmental conditions without affecting plant physiology and growth.  相似文献   
918.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
919.
Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production.  相似文献   
920.
Prostate stem cells (P-SCs) are capable of giving rise to all three lineages of prostate epithelial cells, including basal, luminal, and neuroendocrine cells. Multiple methods have been used to identify P-SCs in adult prostates. These include in vivo renal capsule implantation of a single epithelial cell with urogenital mesenchymal cells, in vitro prostasphere and organoid cultures, and lineage tracing with castration-resistant Nkx3.1 expression (CARN), in conjunction with expression of cell type-specific markers. Both organoid culture and CARN tracing show the existence of P-SCs in the luminal compartment. Although prostasphere cells predominantly express basal cell-specific cytokeratin and P63, the lineage of prostasphere-forming cells in the P-SC hierarchy remains to be determined. Using lineage tracing with P63CreERT2, we show here that the sphere-forming P-SCs are P63-expressing cells and reside in the basal compartment. Therefore we designate them as basal P-SCs (P-bSCs). P-bSCs are capable of differentiating into AR+ and CK18+ organoid cells, but organoid cells cannot form spheres. We also report that prostaspheres contain quiescent stem cells. Therefore, the results show that P-bSCs represent stem cells that are early in the hierarchy of overall prostate tissue stem cells. Understanding the contribution of the two types of P-SCs to prostate development and prostate cancer stem cells and how to manipulate them may open new avenues for control of prostate cancer progression and relapse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号