首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11650篇
  免费   990篇
  国内免费   516篇
  2024年   15篇
  2023年   247篇
  2022年   355篇
  2021年   656篇
  2020年   640篇
  2019年   788篇
  2018年   667篇
  2017年   397篇
  2016年   357篇
  2015年   590篇
  2014年   960篇
  2013年   952篇
  2012年   644篇
  2011年   754篇
  2010年   582篇
  2009年   625篇
  2008年   574篇
  2007年   584篇
  2006年   428篇
  2005年   381篇
  2004年   288篇
  2003年   222篇
  2002年   199篇
  2001年   127篇
  2000年   89篇
  1999年   72篇
  1998年   84篇
  1997年   81篇
  1996年   89篇
  1995年   66篇
  1994年   57篇
  1993年   58篇
  1992年   62篇
  1991年   52篇
  1990年   42篇
  1989年   38篇
  1988年   32篇
  1987年   26篇
  1986年   21篇
  1985年   30篇
  1984年   37篇
  1983年   29篇
  1982年   37篇
  1981年   26篇
  1980年   26篇
  1979年   11篇
  1978年   19篇
  1977年   8篇
  1976年   8篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Background and Aims Floral spurs are hollow, tubular outgrowths that typically conceal nectar. By their involvement in specialized pollinator interactions, spurs have ecological and evolutionary significance, often leading to speciation. Despite their importance and diversity in shape and size among angiosperm taxa, detailed investigations of the mechanism of spur development have been conducted only recently.Methods Initiation and growth of the nectar-yielding petal spur of Centranthus ruber ‘Snowcloud’ was investigated throughout seven stages, based on bud size and developmental events. The determination of the frequency of cell division, quantified for the first time in spurs, was conducted by confocal microscopy following 4'',6-diamidino-2-phenylindole (DAPI) staining of mitotic figures. Moreover, using scanning electron microscospy of the outer petal spur surface unobstructed by trichomes, morphometry of epidermal cells was determined throughout development in order to understand the ontogeny of this elongate, hollow tube.Key Results Spur growth from the corolla base initially included diffuse cell divisions identified among epidermal cells as the spur progressed through its early stages. However, cell divisions clearly diminished before a petal spur attained 30 % of its final length of 4·5 mm. Thereafter until anthesis, elongation of individual cells was primarily responsible for the spur’s own extension. Consequently, a prolonged period of anisotropy, wherein epidermal cells elongated almost uniformly in all regions along the petal spur’s longitudinal axis, contributed principally to the spur’s mature length.Conclusions This research demonstrates that anisotropic growth of epidermal cells – in the same orientation as spur elongation – chiefly explains petal spur extension in C. ruber. Representing the inaugural investigation of the cellular basis for spur ontogeny within the Euasterids II clade, this study complements the patterns in Aquilegia species (order Ranunculales, Eudicots) and Linaria vulgaris (order Lamiales, Euasterids I), thereby suggesting the existence of a common underlying mechanism for petal spur ontogeny in disparate dicot lineages.  相似文献   
902.
The plasticity of root architecture is crucial for plants to acclimate to unfavourable environments including low nitrogen (LN) stress. How maize roots coordinate the growth of axile roots and lateral roots (LRs), as well as longitudinal and radial cell behaviours in response to LN stress, remains unclear. Maize plants were cultivated hydroponically under control (4 mm nitrate) and LN (40 μm ) conditions. Temporal and spatial samples were taken to analyse changes in the morphology, anatomical structure and carbon/nitrogen (C/N) ratio in the axile root and LRs. LN stress increased axile root elongation, reduced the number of crown roots and decreased LR density and length. LN stress extended cell elongation zones and increased the mature cell length in the roots. LN stress reduced the cell diameter and total area of vessels and increased the amount of aerenchyma, but the number of cell layers in the crown root cortex was unchanged. The C/N ratio was higher in the axile roots than in the LRs. Maize roots acclimate to LN stress by optimizing the anatomical structure and N allocation. As a result, axile root elongation is favoured to efficiently find available N in the soil.  相似文献   
903.
《Cell calcium》2015,58(5-6):321-336
The quintessential property of developing cardiomyocytes is their ability to beat spontaneously. The mechanisms underlying spontaneous beating in developing cardiomyocytes are thought to resemble those of adult heart, but have not been directly tested. Contributions of sarcoplasmic and mitochondrial Ca2+-signaling vs. If-channel in initiating spontaneous beating were tested in human induced Pluripotent Stem cell-derived cardiomyocytes (hiPS-CM) and rat Neonatal cardiomyocytes (rN-CM). Whole-cell and perforated-patch voltage-clamping and 2-D confocal imaging showed: (1) both cell types beat spontaneously (60–140/min, at 24 °C); (2) holding potentials between −70 and 0 mV had no significant effects on spontaneous pacing, but suppressed action potential formation; (3) spontaneous pacing at −50 mV activated cytosolic Ca2+-transients, accompanied by in-phase inward current oscillations that were suppressed by Na+-Ca2+-exchanger (NCX)- and ryanodine receptor (RyR2)-blockers, but not by Ca2+- and If-channels blockers; (4) spreading fluorescence images of cytosolic Ca2+-transients emanated repeatedly from preferred central cellular locations during spontaneous beating; (5) mitochondrial un-coupler, FCCP at non-depolarizing concentrations (∼50 nM), reversibly suppressed spontaneous pacing; (6) genetically encoded mitochondrial Ca2+-biosensor (mitycam-E31Q) detected regionally diverse, and FCCP-sensitive mitochondrial Ca2+-uptake and release signals activating during INCX oscillations; (7) If-channel was absent in rN-CM, but activated only negative to −80 mV in hiPS-CM; nevertheless blockers of If-channel failed to alter spontaneous pacing.  相似文献   
904.
905.
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation.  相似文献   
906.
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY‐deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy‐induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy‐induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.  相似文献   
907.
What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time interval for the survivability of the organism. We are studying an organism that demonstrates both properties: the colonial ascidian, Botryllus schlosseri. Botryllus is a member of the Tunicata, the sister group to the vertebrates, and has a number of life history traits which make it an excellent model for studies on aging. First, Botryllus has a colonial life history, and grows by a process of asexual reproduction during which entire bodies, including all somatic and germline lineages, regenerate every week, resulting in a colony of genetically identical individuals. Second, previous studies of lifespan in genetically distinct Botryllus lineages suggest that a direct, heritable basis underlying mortality exists that is unlinked to reproductive effort and other life history traits. Here we will review recent efforts to take advantage of the unique life history traits of B. schlosseri and develop it into a robust model for aging research.  相似文献   
908.
Malignant mesothelioma (MM) is a relatively rare cancer that occurs almost exclusively following respiratory exposure to asbestos in humans. Its pathogenesis is closely associated with iron overload and oxidative stress in mesothelial cells. On fiber exposure, mesothelial cells accumulate fibers simultaneously with iron, which either performs physical scissor function or catalyzes free radical generation, leading to oxidative DNA damage such as strand breaks and base modifications, followed by activation of intracellular signaling pathways. Chrysotile, per se without iron, causes massive hemolysis and further adsorbs hemoglobin. Exposure to indigestible foreign materials also induces chronic inflammation, involving consistent generation of free radicals and subsequent activation of NALP3 inflammasomes in macrophages. All of these contribute to mesothelial carcinogenesis. Genomic alterations most frequently involve homozygous deletion of INK4A/4B, and other pathways such as Hippo and TGF-β pathways are also affected in MM. Recently, analyses of familial MM sorted out BAP1 as a novel responsible tumor suppressor gene, whose function is not fully elucidated. Five-year survival of mesothelioma is still ~8%, and this cancer is increasing worldwide. Connective tissue growth factor, a secretory protein creating a vicious cycle mediated by β-catenin, has been recognized as a hopeful target for therapy, especially in sarcomatoid subtype. Recent research outcomes related to microRNAs and cancer stem cells also offer additional novel targets for the treatment of MM. Iron reduction as chemoprevention of mesothelioma is helpful at least in an animal preclinical study. Integrated approaches to fiber-induced oxidative stress would be necessary to overcome this currently fatal disease.  相似文献   
909.
910.
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号