首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10510篇
  免费   1006篇
  国内免费   578篇
  2024年   20篇
  2023年   249篇
  2022年   384篇
  2021年   628篇
  2020年   634篇
  2019年   780篇
  2018年   668篇
  2017年   395篇
  2016年   361篇
  2015年   563篇
  2014年   905篇
  2013年   896篇
  2012年   608篇
  2011年   717篇
  2010年   550篇
  2009年   576篇
  2008年   545篇
  2007年   510篇
  2006年   395篇
  2005年   340篇
  2004年   252篇
  2003年   189篇
  2002年   162篇
  2001年   92篇
  2000年   57篇
  1999年   59篇
  1998年   65篇
  1997年   48篇
  1996年   53篇
  1995年   42篇
  1994年   36篇
  1993年   38篇
  1992年   45篇
  1991年   33篇
  1990年   23篇
  1989年   13篇
  1988年   19篇
  1987年   17篇
  1986年   21篇
  1985年   12篇
  1984年   17篇
  1983年   14篇
  1982年   15篇
  1981年   14篇
  1980年   9篇
  1978年   5篇
  1974年   5篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Human embryonic stem (hES) cells are expected to be useful in the fields of regenerative medicine and tissue engineering due to their pluripotency. Therefore, it is necessary to establish highly efficient and reliable methods for the cryopreservation of hES cells. We have cryopreserved cynomolgus and human ES cells by the vitrification method, using a chemically-defined dimethyl sulfoxide (Me2SO)-free and serum-free medium composed of Euro-Collins solution as a base medium and 40% (v/v) ethylene glycol (EG) and 10% (w/v) polyethylene glycol (PEG) as cryoprotectants. When the vitrification and the cryoprotectants were combined, the recovery ratio of hES cells was 22.9 ± 7.7%, compared to 0.4 ± 0.2% when the conventional slow-freezing method was used. After the cryopreservation and thawing cycle, hES cells were easily cultured and expressed undifferentiated cell markers such as Nanog, Oct-4, SSEA-4, and alkaline phosphatase activity after several subculturing steps. We also found that the pluripotency of hES cells was maintained, as demonstrated by teratoma formation of ES cells transplanted into severe combined immunodeficient (SCID) mice. Thus, we conclude that we have successfully cryopreserved primate ES cells with high efficiency using a Me2SO-free, chemically-defined medium.  相似文献   
992.
Neural stem cells (NSCs) are of great value for clinical application and scientific research. The development of efficient cryopreservation protocols could significantly facilitate the storage and transportation for clinic applications. The objective of the present study is to improve the survival rate and viability of NSCs. Neural stem cells with three states of single-cell suspension, NSC spheres with diameters of 30-50 μm and 80-100 μm, were cryopreserved by slow-freezing method with the cryoprotective agent (CPA) of dimethyl sulfoxide (Me2SO), respectively. Then the post-thawing NSCs were tested for the survival rate and the differentiation ability. As a result, NSC spheres with diameter of 80-100 μm and Me2SO concentration of 8% achieve the survival rate of 82.9%, and the NSCs still sustain the multi-differentiation potentiality. These results indicated that both the subtle interaction among NSCs and sphere diameters may affect the survival rate together.  相似文献   
993.
Cryopreservation currently is the only method for long-term preservation of cellular viability and function for uses in cellular therapies. Characterizing the cryobiological response of a cell type is essential in the approach to designing and optimizing cryopreservation protocols. For cells used in therapies, there is significant interest in designing cryopreservation protocols that do not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant, since this cryoprotectant has been shown to have adverse effects on hematopoietic stem cell (HSC) transplant patients. This study characterized the cryobiological responses of the human erythroleukemic stem cell line TF-1, as a model for HSC. We measured the osmotic parameters of TF-1 cells, including the osmotically-inactive fraction, temperature-dependent membrane hydraulic conductivity and the membrane permeability to 1 M Me2SO. A two-step freezing procedure (interrupted rapid cooling with hold time) and a graded freezing procedure (interrupted slow cooling without hold time) were used to characterize TF-1 cell recovery during various phases of the cooling process. One outcome of these experiments was high recovery of TF-1 cells cryopreserved in the absence of traditional cryoprotectants. The results of this study of the cryobiology of TF-1 cells will be critical for future understanding of the cryobiology of HSC, and to the design of cryopreservation protocols with specific design criteria for applications in cellular therapies.  相似文献   
994.
The regenerative neurogenesis of the optic tectum of larval Xenopus laevis has been studied analyzing the proliferative and morphogenetic phases of the regeneration process after removal of one optic lobe. To this end, short‐term and long‐term pulses were carried out using the thymidine analog BrdU, selectively incorporated into cells during the S phase of the cell cycle. Results indicate that while in early larvae (stage 49/50, according to Nieuwkoop & Faber 1967 ) regeneration occurs mainly at the expense of the stem cells present in extensive proliferation zones (“matrix areas”) of the midbrain, in late larvae (stage 55/56) regeneration occurs at the expense of stem cells present in very limited matrix areas of the brain and of quiescent cells, which re‐enter the cell cycle following trauma. Moreover, in early larvae, morphogenesis of the optic tectum is carried out according to a precise spatio‐temporal order from rostro‐caudal to latero‐medial. By contrast, in late larvae, the topographical order of the regenerative morphogenesis of the optic lobe is completely altered. As a consequence, the regenerated optic tectum in early larvae has an apparently normal structure, while the regenerated optic tectum in late larvae lacks stratification.  相似文献   
995.
In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions—the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100β. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish.  相似文献   
996.
997.
Mesenchymal stem cells (MSCs) are a heterogeneous population of non-hematopoietic precursor cells predominantly found in the bone marrow. They have been recently reported to home towards the hypoxic tumor microenvironment in vivo. Interleukin-6 is a multifunctional cytokine normally involved in the regulation of the immune and inflammatory response. In addition to its normal function, IL-6 signaling has been implicated in tumorigenesis. Solid tumors develop hypoxia as a result of inadequate O2 supply. Interestingly, tumor types with increased levels of hypoxia are known to have increased resistance to chemotherapy as well as increased metastatic potential. Here, we present evidence that under hypoxic conditions (1.5% O2) breast cancer cells secrete high levels of IL-6, which serve to activate and attract MSCs. We now report that secreted IL-6 acts in a paracrine fashion on MSCs stimulating the activation of both Stat3 and MAPK signaling pathways to enhance migratory potential and cell survival. Inhibition of IL-6 signaling utilizing neutralizing antibodies leads to attenuation of MSC migration. Specifically, increased migration is dependent on IL-6 signaling through the IL-6 receptor. Collectively, our data demonstrate that hypoxic tumor cells specifically recruit MSCs, which through activation of signaling and survival pathways facilitate tumor progression.  相似文献   
998.
999.
1000.
We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号