首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   71篇
  国内免费   124篇
  2024年   3篇
  2023年   14篇
  2022年   11篇
  2021年   13篇
  2020年   25篇
  2019年   34篇
  2018年   38篇
  2017年   30篇
  2016年   26篇
  2015年   29篇
  2014年   46篇
  2013年   64篇
  2012年   28篇
  2011年   51篇
  2010年   46篇
  2009年   65篇
  2008年   60篇
  2007年   54篇
  2006年   39篇
  2005年   37篇
  2004年   33篇
  2003年   27篇
  2002年   16篇
  2001年   15篇
  2000年   20篇
  1999年   19篇
  1998年   19篇
  1997年   14篇
  1996年   15篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   9篇
  1989年   3篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   14篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1974年   5篇
排序方式: 共有1056条查询结果,搜索用时 234 毫秒
931.
Chlorophyll fluorescence induction (Chl-F) was investigated in Photosystem II (PSII)-enriched membranes, which predominantly include active (QB reducing) PSII reaction centres (RCs) and lack Photosystem I (PSI). The Chl-F curve of these preparations show a polyphasic rise from F0, the minimal fluorescence, to FP, the maximal fluorescence, with several intermediate transitions. Analyses of these transitions revealed three exponential rise components with lifetimes of 18 ms, 400 ms and 800 ms. The 18 ms component was assigned to the photoaccumulation of reduced QA. The two slowest components, of 400 ms and 800 ms, were assigned to QB reduction (QB and QB=) and further QB= protonation (till QBH2), respectively. These assignments were based on the observation of specific quenching of the phases by DCMU or by different oxidized, reduced and protonated quinones. The work is done in low light conditions which are saturating to avoid photoinhibition or PSII inactivation effects. The results suggest that the Chl-F curve observed in PSII-enriched membranes can be attributed to the sequential steps till the photoaccumulation (reduction and protonation) of plastoquinone (PQ) by PSII. These results are in good agreement with the molecular models that show a correspondence between Chl-F and PQ reduction steps, like the models that propose and explain the O-J-I-P transients.  相似文献   
932.
The gene 5 protein (g5p) of the Ff virus contains five Tyr, individual mutants of which have now all been characterized by CD spectroscopy. The protein has a dominant tyrosyl 229-nm L(a) CD band that is shown to be approximately the sum of the five individual Tyr contributions. Tyr41 is particularly important in contributing to the high cooperativity with which the g5p binds to ssDNA, and Y41F and Y41H mutants are known to differ in dimer-dimer packing interactions in crystal structures. We compared the solution structures and binding properties of the Y41F and Y41H mutants using CD spectroscopy. Secondary structures of the mutants were similar by CD analyses and close to those derived from the crystal structures. However, there were significant differences in the binding properties of the two mutant proteins. The Y41H protein had an especially low binding affinity and perturbed the spectrum of poly[d(A)] in 2 mM Na(+) much less than did Y41F and the wild-type gene 5 proteins. Moreover, a change in the Tyr 229 nm band, assigned to the perturbation of Tyr34 at the dimer-dimer interface, was absent in titrations with the Y41H mutant under low salt conditions. In contrast, titrations with the Y41H mutant in 50 mM Na(+) exhibited typical CD changes of both the nucleic acid and the Tyr 229-nm band. Thus, protein-protein and g5p-ssDNA interactions appeared to be mutually influenced by ionic strength, indicative of correlated changes in the ssDNA binding and cooperativity loops of the protein or of indirect structural constraints.  相似文献   
933.
Ohnishi T  Salerno JC 《FEBS letters》2005,579(21):4555-4561
A novel mechanism for proton/electron transfer is proposed for NADH-quinone oxidoreductase (complex I) based on the following findings: (1) EPR signals of the protein-bound fast-relaxing semiquinone anion radicals (abbreviated as Q(Nf)-) are observable only in the presence of proton-transmembrane electrochemical potential; (2) Iron-sulfur cluster N2 and Q(Nf)- are directly spin-coupled; and (3) The projection of the interspin vector extends only 5A along the membrane normal [Yano, T., Dunham, W.R. and Ohnishi, T. (2005) Biochemistry, 44, 1744-1754]. We propose that the proton pump is operated by redox-driven conformational changes of the quinone binding protein. In the input state, semiquinone is reduced to quinol, acquiring two protons from the N (matrix) side of the mitochondrial inner membrane and an electron from the low potential (NADH) side of the respiratory chain. A conformational change brings the protons into position for release at the P (inter-membrane space) side of the membrane via a proton-well. Concomitantly, an electron is donated to the quinone pool at the high potential side of the coupling site. The system then returns to the original state to repeat the cycle. This hypothesis provides a useful frame work for further investigation of the mechanism of proton translocation in complex I.  相似文献   
934.
The method presented is based on the alkaline elution procedure for the determination of DNA single-stand (ss) breaks developed by Kohn and on the principles of DNA quantification after binding with the dye Hoechst 33258. In the present study, modification of the alkaline elution procedure with regard to the elution solution volume was performed. The influences of the DNA strandedness, the ethylenediaminetetraacetate/tetraethylammonium hydroxide denaturation and elution solution presence, the DNA solution pH, the dye amount, and the incubation time for the formation of the dye-ssDNA complex on the DNA fluorometric quantification were also studied. The modified DNA alkaline elution procedure followed by the optimized fluorometric determination of the ssDNA was applied on liver tissue from both untreated and treated (N-nitroso-N-methylurea- administered) Wistar rats. The criteria for the selection of the appropriate estimator and statistical analysis of the obtained results are also presented. The method of the DNA alkaline elution followed by fluorometric determination of ssDNA as modified and evaluated is an accurate and reliable approach for the determination of in vivo induced ssDNA strand breaks.  相似文献   
935.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. In this study, the Gly-36, Gly-37, Lys-38, Glu-43, Arg-51, Glu-52, Leu-53, Glu-55, and Glu-56 residues of Orf135, which are conserved in the three MutT-type proteins (Orf135, MutT, and MTH1), were substituted, and the enzymatic activity of these mutant proteins was examined. The mutant proteins with a substitution at the 36th, 37th, 52nd, and 56th amino acid residues completely lost their activity. On the other hand, the mutant proteins with a substitution at the 38th, 43rd, 51st, 53rd, and 55th residues could hydrolyze 5-methyl-dCTP. Some mutants with detectable activity for 5-methyl-dCTP did not hydrolyze dCTP. Activities for known substrates (5-methyl-dCTP, dCTP, 2-hydroxy-dATP, and 8-hydroxy-dGTP) were examined in detail with the four mutants, K38R, E43A, L53A, and E55Q. These results indicate the essential residues for the activity of the Orf135 protein.  相似文献   
936.
937.
To counteract oxidative damage in nucleic acids, mammalian cells are equipped with several defense mechanisms. We herein review that MTH1, MUTYH and OGG1 play important roles in mammalian cells avoiding an accumulation of oxidative DNA damage, both in the nuclear and mitochondrial genomes, thereby suppressing carcinogenesis and cell death. MTH1 efficiently hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP, 8-oxo-dATP and 2-hydroxy (OH)-dATP, to the monophosphates, thus avoiding the incorporation of such oxidized nucleotides into the nuclear and mitochondrial genomes. OGG1 excises 8-oxoG in DNA as a DNA glycosylase and thus minimizes the accumulation of 8-oxoG in the cellular genomes. MUTYH excises adenine opposite 8-oxoG, and thus suppresses 8-oxoG-induced mutagenesis. MUTYH also possesses a 2-OH-A DNA glycosylase activity for excising 2-OH-A incorporated into the cellular genomes. Increased susceptibilities to spontaneous carcinogenesis of the liver, lung or intestine were observed in MTH1-, OGG1- and MUTYH-null mice, respectively. The increased occurrence of lung tumors in OGG1-null mice was abolished by the concomitant disruption of the Mth1 gene, indicating that an increased accumulation of 8-oxoG and/or 2-OH-A might cause cell death. Furthermore, these defense mechanisms also likely play an important role in neuroprotection.  相似文献   
938.
A cytochrome b 6 f deficient mutant of Lemna perpusilla maintains a constant and lower level of the light-harvesting chl a/b-binding protein complex II (LHC II) as compared to the wild type plants at low-light intensities. Inhibition of the plastoquinone pool reduction increases the LHC II content of the mutant at both low- and high-light intensities but only at high-light intensity in the wild type plants. Proteolytic activity against LHC II appears during high-light photoacclimation of wild type plants. However, the acclimative protease is present in the mutant at both light intensities. These and additional results suggest that the plastoquinone redox state serves as the major signal-transducing component in the photoacclimation process affecting both, synthesis and degradation of LHC II and appearance of acclimative LHC II proteolysis. The plastoquinol pool cannot be oxidized by linear electron flow in the mutant plants which are locked in a ‘high light’ acclimation state. The cytochrome b 6 f complex may be involved indirectly in the regulation of photoacclimation via 1) regulation of the plastoquinone redox state; 2) regulation of the redox-controlled thylakoid protein kinase allowing exposure of the dephosphorylated LHC II to acclimative proteolysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
939.
For the first time, growth throughout the life cycle of an annual fish, Cynolebias viarius, was assessed in the wild, within a temporary pool located in eastern Uruguay. Before pools dry out at the beginning of the warm season, C. viarius deposit eggs in the sediment. Embryos hatch when precipitation fills the pools again in March–April. During 1996, at biweekly or monthly intervals, environmental conditions were monitored and the length of 20 to 55 C. viarius measured. Pool size varied between 109 and 475m2, respectively. Water depth at its center reached between 10 (June) and 35cm (September). Water temperatures ranged from 6°C in June to 28.8°C in November. The water was slightly acidic (pH = 6.3 ± 0.2) and subsaturated with O2 (48–88%); conductivity averaged 258 ± 39Scm–1. On the first field trip after inundation (May 2), mean length of C. viarius was 9.9 ± 1.0mm. Maximum growth rate (0.66mm per day) was determined during the following two-week-interval and was associated with relatively high water temperatures (20–22°C). While fish length remained virtually unchanged during the colder winter months, C. viarius manifested growth, specially in weight, during the last third of the life cycle. Fish were sexually mature at 8 (67%) to 18 (100%) weeks of age. In the laboratory, specimens held at 25°C grew faster and reached sexual maturity at an earlier age (11 weeks) than at 15°C (10–16 weeks). Over the 5-months study period, mortality reached 37.5% at 15°C and 100% at 25°C. Results are compared to information available from other annual fishes.  相似文献   
940.
Hermansky-Pudlak syndrome (HPS) consists of a group of genetically heterogeneous disorders which share the clinical findings of oculocutaneous albinism, a platelet storage pool deficiency, and some degree of ceroid lipofuscinosis. Related diseases share some of these findings and may exhibit other symptoms and signs but the underlying defect in the entire group of disorders involves defective intracellular vesicle formation, transport or fusion. Two HPS-causing genes, HPS1 and ADTB3A, have been isolated but the function of only the latter has been determined. ADTB3A codes for the beta 3A subunit of adaptor complex-3, responsible for vesicle formation from the trans-Golgi network (TGN). The many HPS patients who do not have HPS1 or ADTB3A mutations have their disease because of mutations in other genes. Candidates for these HPS-causing genes include those responsible for mouse models of HPS or for the 'granule' group of eye color genes in Drosophila. Each gene responsible for a subset of HPS or a related disorder codes for a protein which almost certainly plays a pivotal role in vesicular trafficking, inextricably linking clinical and cell biological interests in this group of diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号