首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   29篇
  国内免费   37篇
  591篇
  2023年   6篇
  2022年   4篇
  2021年   15篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2017年   10篇
  2016年   15篇
  2015年   20篇
  2014年   27篇
  2013年   40篇
  2012年   21篇
  2011年   24篇
  2010年   22篇
  2009年   20篇
  2008年   28篇
  2007年   29篇
  2006年   17篇
  2005年   26篇
  2004年   19篇
  2003年   25篇
  2002年   20篇
  2001年   18篇
  2000年   8篇
  1999年   16篇
  1998年   18篇
  1997年   11篇
  1996年   12篇
  1995年   10篇
  1994年   14篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
排序方式: 共有591条查询结果,搜索用时 0 毫秒
91.
Full-length cDNA clones encoding FMO1 and FMO5 have been isolated from a library constructed with mRNA from the liver of a female CD-1 mouse. The derived sequence of FMO1 contains 2310 bases: 1596 in the coding region, 301 in the 5′-flanking region, and 413 in the 3′-flanking region. The sequence for FMO5 consists of 3168 bases; 1599 in the coding region, 812 in the 5′-flanking region, and 757 in the 3′-flanking region. The sequence of FMO1 encodes a protein of 532 amino acids with a predicted molecular weight of 59.9 kDa and shows 83.3% identity to human FMO1 and 83–94% identity to other FMO1 homologs. FMO5 encodes a protein of 533 amino acids with a predicted molecular weight of 60.0 kDa and 84.1% identity to human FMO5 and 83–84% identity to other FMO5 orthologs. Two GxGxxG putative pyrophosphate binding domains exist beginning at positions 9 and 191 for FMO1, and 10 and 192 for FMO5. Mouse FMO1 and FMO5 were expressed in E. coli and show similar mobility to the native proteins as determined by SDS-PAGE. The expressed FMO1 protein showed activity toward methimazole, and FMO5 was active toward n -octylamine. In addition, FMO1 was shown to metabolize radiolabeled phorate, whereas FMO5 showed no activity toward phorate. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 205–212, 1998  相似文献   
92.
We present alternative and improved protocols for in situ analysis of single copy genes in prokaryotes. Primed in situ amplification (PRINS) and cycle PRINS were used to detect, via the incorporation of a fluorescein labelled nucleotide, the presence of specific genes carried on both high and low copy number plasmids in individual cells of Escherichia coli and a marine bacterium, SW5. The optimised protocols described enabled a significant reduction in non-specific signals whilst maintaining high fluorescent activity via labelled nucleotide incorporation. In addition, nucleic acids were amplified linearly and were retained within the permeabilised microbial cells. These methods provide considerable advances in sensitivity, specificity and reliability compared to current protocols for bacterial in situ nucleic acid amplification.  相似文献   
93.
棉铃虫抗药性的生理生化机制研究   总被引:10,自引:2,他引:10  
张友军  张文吉 《昆虫学报》1997,40(3):247-253
本文报道了棉铃虫Helicoverpa armigera田间抗性种群对杀虫剂抗药性的生理生化机制。抗性种群(HJ-R)5龄幼虫羧酸酯酶、谷胱甘肽转移酶、多功能氧化酶活力均明显高于相对敏感种群(HD-S)。两种群乙酰胆碱酯酶对杀虫剂敏感性没有显著差异。HJ-R种群的腹神经索对氰戊菊酯表现了2-3倍的神经不敏感性。HJ-R种群对氨基甲酸酯类杀虫剂的抗性主要是由代谢机制引起,其中多功能氧化酶可能起主导作用;对菊酯的抗性是由多功能氧化酶、酯酶、以及神经不敏感性几个因子综合作用的结果。  相似文献   
94.
Methanotrophic bacteria possess a unique set of enzymes enabling them to oxidize, degrade and transform organic molecules and synthesize new compounds. Therefore, they have great potential in environmental biotechnology. The application of these unique properties was demonstrated in three case studies: (i) Methane escaping from leaky gas pipes may lead to massive mortality of trees in urban areas. Lack of oxygen within the soil surrounding tree roots caused by methanotrophic activity was identified as one of the reasons for this phenomenon. The similarity between metabolic reactions performed by the key enzymes of methanotrophs (methane monooxygenase) and ammonium oxidizers (ammonium monooxygenase) might offer a solution to this problem by applying commercially available nitrification and urease inhibitors. (ii) Methanotrophs are able to co‐metabolically degrade contaminants such as low‐molecular‐weight‐chlorinated hydrocarbons in soil and water in the presence of methane. Batch and continuous trichloroethylene degradation experiments in laboratory‐scale reactors using Methylocystis sp. GB 14 were performed, partly with cells entrapped in a polymer matrix. (iii) Using a short, two‐stage pilot‐scale process, the intracellular polymer accumulation of poly‐β‐hydroxybutyrate (PHB) in methanotrophs reached a maximum of 52%. Interestingly, an ultra‐high‐molecular‐weight PHB of 3.1 MDa was accumulated under potassium deficiency. Under strictly controlled conditions (temperature, pH and methane supply) this process can be nonsterile because of the establishment of a stable microbial community (dominant species Methylocystis sp. GB 25 ≥86% by biomass). The possibility to substitute methane with biogas from renewable sources facilitates the development of a methane‐based PHB production process that yields a high‐quality biopolymer at competitive costs.  相似文献   
95.
Saccharomyces cerevisiae utilizes several regulatory mechanisms to maintain tight control over the intracellular level of farnesyl diphosphate (FPP), the central precursor to nearly all yeast isoprenoid products. High-level production of non-native isoprenoid products requires that FPP flux be diverted from production of sterols to the heterologous metabolic reactions. To do so, expression of the gene encoding squalene synthase (ERG9), the first committed step in sterol biosynthesis, was down-regulated by replacing its native promoter with the methionine-repressible MET3 promoter. The intracellular levels of FPP were then assayed by expressing the gene encoding amorphadiene synthase (ADS) and converting the FPP to amorphadiene. Under certain culture conditions amorphadiene production increased fivefold upon ERG9 repression. With increasing flux to amorphadiene, squalene and ergosterol production each decreased. The levels of these three metabolites were dependent not only upon the level of ERG9 repression, but also the timing of its repression relative to the induction of ADS and genes responsible for enhancing flux to FPP.  相似文献   
96.
乳酸氧化酶研究进展   总被引:3,自引:0,他引:3  
乳酸氧化酶能够氧化乳酸生成丙酮酸,由于反应过程中不需要外源辅酶作为电子受体,而具有较好的应用前景。乳酸氧化酶和许多黄素蛋白酶相比较,具有明显的共性,因此可视为黄素蛋白家族中的一员。乳酸单加氧酶的催化机理和乳酸氧化酶相似,但产物不同,这主要是由于中间产物复合体稳定性的差别。乳酸单加氧酶催化形成的中间复合体EFMNH2pyruvate很稳定,在氧的作用下,生成EFMNpyruvateH2O2中间体,继续反应形成乙酸,CO2和H2O;乳酸氧化酶生成的EFMNH2pyruvate复合体不稳定,丙酮酸很快从复合体上分离下来,还原型中间体EFMNH2被氧氧化,同时形成过氧化氢。  相似文献   
97.
Particulate methane monooxygenase (pMMO), a copper-containing membrane protein, catalyzes methane hydroxylation under aerobic conditions. We found that the activity of pMMO was increased by catalase, implying that hydrogen peroxide (H2O2) is generated by pMMO with duroquinol, an electron donor for pMMO, and that the generated H2O2 inhibits pMMO activity. In addition, reversible inhibition of pMMO with H2O2 was observed upon treatment of pMMO with H2O2 followed by the addition of catalase, and H2O2 formation by pMMO with duroquinol was detected using a fluorescence probe. The redox behavior of type 2 copper in pMMO measured by the electron paramagnetic resonance revealed that H2O2 re-oxidizes the type 2 copper in pMMO reduced with duroquinol.  相似文献   
98.
99.
The marine diatom Rhizosolenia setigera is unique among this group of microalgae given that it is only one of a handful of diatom species that can produce highly branched isoprenoid (HBI) hydrocarbons. In our efforts to determine distinguishing molecular characteristics in R. setigera CCMP 1694 that could help elucidate the underlying mechanisms for its ability to biosynthesize HBIs, we discovered the occurrence of independent genes encoding for two isopentenyl diphosphate isomerases (RsIDI1 and RsIDI2) and one squalene synthase (RsSQS), enzymes that catalyze non‐consecutive steps in isoprenoid biosynthesis. These genes are peculiarly fused in all other genome‐sequenced diatoms to date, making their organization in R. setigera CCMP 1694 a clear distinguishing molecular feature. Phylogenetic and sequence analysis of RsIDI1, RsIDI2, and RsSQS revealed that such an arrangement of individually transcribed genes involved in isoprenoid biosynthesis could have arisen through a secondary gene fission event. We further demonstrate that inhibition of squalene synthase (SQS) shifts the flux of exogenous isoprenoid precursors towards HBI biosynthesis suggesting the competition for isoprenoid substrates in the form of farnesyl diphosphate between the sterol and HBI biosynthetic pathways in this diatom.  相似文献   
100.
H and CuM). The CuH center changes from 4- or 5-coordinate tetragonal to a 2-coordinate configuration, with one of the three histidine ligands becoming undetectable by EXAFS (suggesting that it has moved away from the CuH by at least 0.3 Å). The CuM center changes from 4- or 5-coordinate tetragonal to a trigonal or tetrahedral configuration, with an estimated 0.3–0.5 Å movement of the M314 S ligand. Reduction also leads to loss of coordinated water from both of the coppers. Substrate binding has little or no effect on the local environment of the Cu centers in either oxidation state. These findings bring into question whether direct electron transfer between CuH and CuM via a tunneling mechanism can be fast enough to support the observed catalytic rate, and suggest that some other mechanism for electron transfer, such as superoxide channeling, should be considered. Received: 17 November 1999 / Accepted: 25 February 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号