首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   29篇
  国内免费   37篇
  591篇
  2023年   6篇
  2022年   4篇
  2021年   15篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2017年   10篇
  2016年   15篇
  2015年   20篇
  2014年   27篇
  2013年   40篇
  2012年   21篇
  2011年   24篇
  2010年   22篇
  2009年   20篇
  2008年   28篇
  2007年   29篇
  2006年   17篇
  2005年   26篇
  2004年   19篇
  2003年   25篇
  2002年   20篇
  2001年   18篇
  2000年   8篇
  1999年   16篇
  1998年   18篇
  1997年   11篇
  1996年   12篇
  1995年   10篇
  1994年   14篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
排序方式: 共有591条查询结果,搜索用时 31 毫秒
41.
植物三萜皂苷生物合成中关键后修饰酶研究进展   总被引:1,自引:0,他引:1  
三萜皂苷是由三萜苷元、糖基、糖醛酸等组成的C30萜类化合物,是许多药用植物的主要活性成分,具有广泛的药理作用。三萜皂苷的生物合成包括前体和三萜皂苷骨架的形成以及调控皂苷结构多样性的后修饰。三萜皂苷的后修饰包括三萜骨架的氧化/羟基化和糖基化,分别由不同超基因家族编码的细胞色素P450单加氧酶和糖基转移酶进行催化。三萜皂苷通过后修饰最终可形成多种单体皂苷。目前,已在少数植物中识别和确认了个别与三萜皂苷生物合成相关的关键后修饰酶,发现了部分很可能参与后修饰过程的候选基因。该文就近年来国内外有关三萜皂苷生物合成途径关键后修饰酶的研究进行综述,为进一步开展相关研究和对合成精细途径的解析提供参考。  相似文献   
42.
Flavocytochrome P450BM‐3 is a soluble bacterial reductase composed of two flavin (FAD/FMN) and one HEME domains. In this article, we have performed molecular dynamics simulations on both the isolated FMN and HEME domains and their crystallographic complex, with the aim to study their binding modes and to garner insight into the interdomain electron transfer (ET) mechanism. The results evidenced an interdomain conformational rearrangement that reduces the average distance between the FMN and HEME cofactors from 1.81 nm, in the crystal structure, to an average value of 1.41 ± 0.09 nm along the simulation. This modification is in agreement with previously proposed hypotheses suggesting that the crystallographic FMN/HEME complex is not in the optimal arrangement for favorable ET rate under physiological conditions. The calculation of the transfer rate along the simulation, using the Pathways Path method, demonstrated the occurrence of seven ET pathways between the two redox centers, with three of them providing ET rates (KET) comparable with the experimental one. The sampled ET pathways comprise the amino acids N319, L322, F390, K391, P392, F393, A399, C400, and Q403 of the HEME domain and M490 of the FMN domain. The values of KET closer to the experiment were found along the pathways FMN(C7) → F390 → K391 → P392 → HEME(Fe) and FMN(C8) → M490 → F393 → HEME(Fe). Finally, the analysis of the collective modes of the protein complex evidences a clear correlation of the first two essential modes with the activation of the most effective ET pathways along the trajectory. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 197–209, 2014.  相似文献   
43.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   
44.
45.
Yan-Hong Wang 《Phytochemistry》2010,71(16):1825-1831
Several lines of evidence indicate that (+)-δ-cadinene-8-hydroxylase (CYP706B1) plays an important role in biosynthesis of gossypol in Gossypium arboreum L. ( [Luo et al., 2001] and [Wang et al., 2003]). The catalytically active enzyme has been expressed in yeast microsomes. Some microsomal preparations conjugated the hydroxylated (+)-δ-cadinene to a moiety that has not yet been identified. However, when microsomes were treated with n-octyl-β-d-glucoside (OG), a non-ionic detergent, (+)-δ-cadinene was reproducibly converted to the free alcohol, 8-hydroxy-(+)-δ-cadinene. OG had little effect on Km and slightly stimulated apparent Vmax. Enzymic activity was more than 10-fold more sensitive to inhibition by the N-substituted imidazole clotrimazole than to miconazole. Sesquiterpene olefins (−)-δ-cadinene, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and a mixture of (−)- and (+)-α-copaene were inhibitory to hydroxylation of (+)-δ-cadinene. In addition, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and, to a smaller extent, (−)-δ-cadinene served as alternative substrates for (+)-δ-cadinene-8-hydroxylase and were converted to mono-hydroxylated products. Of the five olefins tested, α-humulene and α-copaene are found in lysigenous glands of cotton (Elzen et al., 1985), which are also the site of gossypol accumulation ( [Bell et al., 1978] and [Mace et al., 1976]) and the probable site of its biosynthesis.  相似文献   
46.
Sorgoleone   总被引:2,自引:0,他引:2  
Sorgoleone, a major component of the hydrophobic root exudate of sorghum [Sorghum bicolor (L.) Moench], is one of the most studied allelochemicals. The exudate also contains an equivalent amount of a lipid resorcinol analog as well as a number of minor sorgoleone congeners. Synthesis of sorgoleone is constitutive and compartmentalized within root hairs, which can accumulate up to 20 μg of exudate/mg root dry weight. The biosynthesis pathway involves unique fatty acid desaturases which produce an atypical 16:3 fatty acyl-CoA starter unit for an alkylresorcinol synthase that catalyzes the formation of a pentadecatrienylresorcinol intermediate. This intermediate is then methylated by SAM-dependent O-methyltransferases and dihydroxylated by cytochrome P450 monooxygenases. An EST data set derived from a S. bicolor root hair-specific cDNA library contained all the candidate sequences potentially encoding enzymes involved in the sorgoleone biosynthetic pathway. Sorgoleone interferes with several molecular target sites, including inhibition of photosynthesis in germinating seedlings. Sorgoleone is not translocated acropetally in older plants, but can be absorbed through the hypocotyl and cotyledonary tissues. Therefore, the mode of action of sorgoleone may be the result of inhibition of photosynthesis in young seedlings in concert with inhibition of its other molecular target sites in older plants. Due to its hydrophobic nature, sorgoleone is strongly sorbed in soil which increases its persistence, but experiments show that it is mineralized by microorganisms over time.  相似文献   
47.
Increasing its root to shoot ratio is a plant strategy for restoring water homeostasis in response to the long-term imposition of mild water stress. In addition to its important role in diverse fundamental processes, indole-3-acetic acid (IAA) is involved in root growth and development. Recent extensive characterizations of the YUCCA gene family in Arabidopsis and rice have elucidated that member’s function in a tryptophan-dependent IAA biosynthetic pathway. Through forward- and reverse-genetics screening, we have isolated Tos17 and T-DNA insertional rice mutants in a CONSTITUTIVELY WILTED1 (COW1) gene, which encodes a new member of the YUCCA protein family. Homozygous plants with either a Tos17 or T-DNA-inserted allele of OsCOW1 exhibit phenotypes of rolled leaves, reduced leaf widths, and lower root to shoot ratios. These phenotypes are evident in seedlings as early as 7–10 d after germination, and remain until maturity. When oscow1 seedlings are grown under low-intensity light and high relative humidity, the rolled-leaf phenotype is greatly alleviated. For comparison, in such conditions, the transpiration rate for WT leaves decreases approx. 5- to 10-fold, implying that this mutant trait results from wilting rather than being a morphogenic defect. Furthermore, a lower turgor potential and transpiration rate in their mature leaves indicates that oscow1 plants are water-deficient, due to insufficient water uptake that possibly stems from that diminished root to shoot ratio. Thus, our observations suggest that OsCOW1-mediated IAA biosynthesis plays an important role in maintaining root to shoot ratios and, in turn, affects water homeostasis in rice.  相似文献   
48.
The P450 monooxygenases CYP102A1 from Bacillus megaterium and CYP102A3 from Bacillus subtilis are fusion flavocytochromes comprising of a P450 heme domain and a FAD/FMN reductase domain. This protein organization is responsible for the extraordinary catalytic activities making both monooxygenases promising enzymes for biocatalysis. CYP102A1 and CYP102A3 are fatty acid hydroxylases that share 65% identity, and their mutants are able to oxidize a wide range of substrates. In an attempt to increase the process stability of CYP102A1, we exchanged the more unstable reductase domain of CYP102A1 with the more stable reductase domain of CYP102A3. Stability of the chimeric fusion protein was determined spectrophotometrically as well as by measuring the hydroxylation activity towards 12-para-nitrophenoxydodecanoic acid (12-pNCA) after incubation at elevated temperatures. In the reaction with 12-pNCA, the new chimeric protein exhibited 88 and 38% of the activity of CYP102A3 and CYP102A1, respectively, but was able to hydroxylate substrates within a wider temperature range compared with the parental enzymes. Maximum activity was obtained at 51°C, and the half-life at 50°C was with 100 min more than ten times longer than that of CYP102A1 (8 min).  相似文献   
49.
Recently we have developed a new approach to study protein–protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam–Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP–FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in β-sheets and α-helix content, a decrease in the population of random coil/310-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam–Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx–P450cam complex.  相似文献   
50.
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号