首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1374篇
  免费   84篇
  国内免费   137篇
  2023年   13篇
  2022年   14篇
  2021年   27篇
  2020年   25篇
  2019年   28篇
  2018年   29篇
  2017年   28篇
  2016年   40篇
  2015年   25篇
  2014年   42篇
  2013年   47篇
  2012年   40篇
  2011年   45篇
  2010年   32篇
  2009年   73篇
  2008年   53篇
  2007年   65篇
  2006年   70篇
  2005年   57篇
  2004年   65篇
  2003年   48篇
  2002年   52篇
  2001年   50篇
  2000年   36篇
  1999年   36篇
  1998年   34篇
  1997年   45篇
  1996年   54篇
  1995年   58篇
  1994年   35篇
  1993年   42篇
  1992年   37篇
  1991年   36篇
  1990年   32篇
  1989年   32篇
  1988年   24篇
  1987年   16篇
  1986年   7篇
  1985年   22篇
  1984年   10篇
  1983年   14篇
  1982年   9篇
  1981年   14篇
  1980年   12篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
排序方式: 共有1595条查询结果,搜索用时 11 毫秒
21.
Short-term studies for comparing some primary metabolic and growth-responses to salt stress in seedlings of two maize genotypes differing in drought resistance were carried out under controlled conditions. Both genotypes revealed high yielding ability in favourable environments. Treatments: Control (Hoagland-Arnon No 1 solution) and salt stress (Hoagland-Arnon solution plus NaCl, s = –0.84MPa). It was found that in both genotypes the activity of the principal metabolic pathway supplying reduced nitrogen (15N) for the synthesis of amino acids and proteins as well as the assimulatory number (14CO2—assimilation relation rate per chlorophyll unit) were decreased under the effect of the stress. These effects were more marked in the resistant genotype. In this genotype the stress induced metabolic activity decline was accompanied by a corresonding reduction of the relative growth rate. Conversely, continuing growth, resulting probably from accumulation of solutes, was observed in the susceptible genotype.On the basis of these and other observations it is assumed that the resistant genotype manifests short-term energy saving stress reactions.  相似文献   
22.
Inorganic-N concentrations in soil solution of whole tree harvest (WTH) and conventional fell (CF) plots were monitored for two years before felling and four years after felling. Concentrations in the mineral soil after felling were higher than in standing forest for up to 14 months in both felling treatments. In the WTH plots inorganic-N concentrations then dropped steadily until four years after felling they approached zero. In contrast, inorganic-N concentrations of the CF plots remained comparatively large. Inorganic-N was dominated by nitrate throughout the period of the study, and especially in the mineral horizons.Felling debris was not a source of inorganic-N, unless indirectly through release and mineralisation of soluble organic-N. Vegetation cover, biomass and N content were substantially greater in the WTH plots two to three years after felling, compared with the CF. Vegetation cover and brash cover (slash cover in N. America) were negatively correlated. There was also a negative correlation between inorganic-N concentration in soil water samplers and the vegetation cover within the collection area of, or a 1 m square surrounding, these samplers.Two factors are probably responsible for the reduction in inorganic-N concentrations after felling in the WTH — the rapid re-establishment of vegetation and the lack of a N source in felling debris. In the CF plots, brash prevents re-establishment of vegetation over wide areas for at least four years. However, brash is not directly a source of inorganic-N at this stage.  相似文献   
23.
24.
The relationship among water use efficiency (WUE), productivity and carbon isotopic composition (δ13C) in white spruce (Picea glauca (Moench) Voss) seedlings was investigated. Sixteen hundred seedlings representing 10 controlled crosses were planted in the field in individual buried sand-filled cylinders. The soil water content in the cylinders was measured using time domain reflectometry over two growing seasons and seedling water use determined by water balance. Two watering treatments were imposed: irrigation and dry land. There was significant (1.6–2.0%c) genetic variation in needle δ13C. Ranking of crosses in terms of δ13C was generally maintained over watering treatments and there was not a significant genetic versus environmental interaction. There was a positive correlation between δ13C and both intrinsic and long-term WUE (more positive δ13C with increased WUE) and between δ13C and productivity, suggesting a correlation due to variation in photosynthetic capacity. Root to shoot ratios did not increase in water-stressed plants, indicating that responses to drought were primarily at the level of gas exchange, rather than through morphological changes. Our results indicate that it should be possible to use δ13C as a surrogate for WUE and to select white spruce genotypes for high WUE without compromising yield.  相似文献   
25.
Evidence that cytokinin controls bud size and branch form in Norway spruce   总被引:3,自引:0,他引:3  
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree.  相似文献   
26.
Total, organic and extractable P were measured in the humus and underlying soil to 10 cm depth beneath Sitka spruce (SS) and mixed Sitka spruce and Scots pine (SS+SP) stands planted on upland heath. The humus beneath SS+SP contained significantly (p<0.01) greater amounts of total and organic-P than that in SS and the mixed stands had more effectively retained approximately 87 per cent of previously applied fertilizer-P, totalling 100 kg P ha–1, compared with 70 per cent in SS. Despite the larger amounts of total-P in the mixed plots 0.01 M CaCl2 extractable molybdate reactive phosphorus (MRP) was significantly (p<0.05) greater in SS+SP humus only during March and April. Greater concentrations of MRP were released from the humus and soil during July and August at a mean rate of 58 g P ha–1 day–1. This coincided with drying of the soil during the summer and the rate of release, attributed to death of fine roots and microorganisms, was 4 to 30 times greater than reported values for rates of net mineralization of P from forest soils.  相似文献   
27.
Ethylene production from an embryogenic culture of Norway spruce ( Picea abies L.) was generally low. ca 2.5 nl g−1 h−1, whereas 1-aminocyclopropane-1 -carboxylic acid (ACC) concentration was high, fluctuating between 50 and 500 nmol g−1 during the 11-day incubation period. Hypoxia (2.5 and 5 kPa O2) rapidly inhibited ethylene production without subsequent accumulation of ACC. Exogenous ACC (1, 10 and 100 μ M ) did not increase ethylene production, but the highest concentrations inhibited tissue growth. Ethylene (7 μl I−1) did not inhibit growth either when supplied as ethephon in the medium or in a continuous flow system. Benzyladenine (BA) had little effect on ethylene production, although it was necessary for sustaining the ACC level. Omission of 2.4-dichloro-phenoxyacetic acid (2.4-D) from the medium caused ethylene production to increase from about 2.5 to 7 nl g−1 h−1 within the 11-day incubation period. Although 2.4-D did not specifically alter the endogenous level of ACC, the lowest ACC level, 33 nmol g−1, was observed in tissue treated with 2.4-D (22.5 μ M ) and no BA for 11 days. Data from this treatment were used to estimate the kinetic constants for ACC oxidase, the apparent Km was 50 μ M and Vmax 2.7 nl g−1 h−1. Growth of the tissue was strongly inhibited by 2.4-D in the absence of BA, but weakly in the presence of BA (4.4 μ M ). The results suggest that ethylene or ACC may be involved in the induction of embryogenic tissue and in the early stages of embryo maturation.  相似文献   
28.
Three years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed lo filtered air, O3 (day and night concentrations of 78 and 30 μgm?3: respectively). NH3 (54 μg m?3) and to a mixture of NH3+O3 (day and night concentrations of 49 + 83 and 49 + 44 μg m?3 respectively), for 5 months in fumigation chambers. Both gas exchange and chlorophyll fluorescence were measured on shoots which had sprouted at the beginning of the exposure period. After 4. 8, 10 and 20 weeks of exposure, light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. Net CO2 assimiialion was measured at maximum light intensity of 560) μmol m?2 S?1 (Pn.560). After 8 and 10 weeks of exposure also light response curves of CO2 assimilation were assessed. Shoots exposed to O3 showed a reduction in net CO2 assimilation as compared to the control shoots during the entire exposure period. The reduction was related lo a lower chlorophyll content and a lower electron transport rate, whereas no effect on quantum yield efficiency (qy) was observed. In contrast, shoots exposed to NH3 showed a positive effect on photosynthesis. Shoots exposed to NH3. + O3 showed a rapid increase in Pn.560, in the period between 4 and 8 weeks to a level equal of that of the NH3-treatment. After this period a decline in Pn.560 was observed. After 10 weeks of exposure shoots exposed to O3 showed an increased transpiration rate in the dark as compared to the control shoots. In addition, water use efficiency (WUE) declined as a result of an increase in leaf conductance. Both observations indicate that the stomatal apparatus was affected by O3. A high transpiration rate in the dark was also found for shoots esposed to NHX. However, shoots exposed to NH3+ O3 showed neither an effect on WUE, nor an effect on transpiration rate in the dark. The possibility that NH3 delayed the O3 induced effects on photosynthesis and stomatal conductance is discussed.  相似文献   
29.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol], a triazole growth retardant, increased the 1-aminocyclopropane-1-carboxylic acid (ACC) level and resulted in reduced ethylene production, estimated as ethylene release in a closed system or by vacuum-extraction, in the primary leaves of Phaseolus vulgaris L. cv. Juliska seedlings exposed to light. At the light/dark transition, a definite enhancement of the endogenous ethylene level was observed by vacuum-extraction of primary leaves of treated plants and the ethylene deficiency of retardant-treated leaves ceased. The concentration of ACC after the light/dark transition followed the pattern for ethylene, and the increase in ACC content was paralleled by a decrease in malonyl-ACC.
It is concluded that the internal level of ethylene is not necessarily lower in the primary leaves of paclobutrazol-treated bean plants, but under special environmental conditions in vivo it may reach that of the control.  相似文献   
30.
Severely yellowed ten-year-old spruce trees growing in the Vosges Mountains on an acidic soil were fertilised with Magnesium lime during the spring of 1990. The effects of this treatment were assessed 18 months later. A very significant improvement of the mineral status of the trees was detected, with increasing Mg contents in the needles, and as a consequence, reduced yellowing and improved chlorophyll content. Only slight differences with control trees were observed for height increase. Effects of this improved nutrition on photosynthesis were tested measuring net CO2 assimilation rates and chlorophyll a fluorescence. Light-saturated net assimilation rates of current-year needles were high, reaching 5.3 mol m–2 s–1 on a total needle area basis. The improvement in chlorophyll and Mg content had no significant effect on net assimilation rates or on any parameter describing photochemical functions of both current-and previous-year needles. Despite the strong inter-individual variability in needle chlorophyll and Mg contents (ranging from 0.2 to 0.8 mg g–1 fresh weight, and 0.05 to 0.5 mg g-1 dry weight respectively), photochemical efficiency of PS II under limiting irradiance only decreased significantly on older needles displaying Mg contents below 0.1 mg g–1. It is concluded from these results that spruce trees exhibit a high degree of plasticity with regard to Mg deficiency on acidic soils, and that improved Mg nutrition and increased chlorophyll content do not necessarily improve photosynthesis and height growth.Abbreviations A light-saturated net CO2 assimilation rate (mol m–2 s–1) - gw light-saturated needle conductance to water vapour (mmol m–2 s–1) - wp and wm pre-dawn and mid-day needle water potential (MPa) - osmotic potential of sap expressed from needles (MPa) - PFD photosynthetic photon flux density (mol m–2 s–1) - Fv/Fm photochemical efficiency of PS II after 20 min dark adaptation - F/Fm ' photochemical efficiency of PS II reaction centres after 10 min at a PFD of 220 mol m–2 s–1  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号