首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   19篇
  169篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   7篇
  2013年   10篇
  2012年   9篇
  2011年   8篇
  2010年   10篇
  2009年   5篇
  2008年   11篇
  2007年   10篇
  2006年   9篇
  2005年   4篇
  2004年   10篇
  2003年   5篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
81.
Many species have mitochondrial DNA lineages that are phylogenetically intermixed with other species, but studies have rarely tested the cause of such paraphyly. In this study, we tested two hypotheses that could explain mitochondrial paraphyly of Holarctic gadwalls (Anas strepera) with respect to Asian falcated ducks (A. falcata). First, hybridization could have resulted in falcated duck mitochondrial DNA (mtDNA) introgressing into the gadwall gene pool. Second, gadwalls and falcated ducks could have diverged so recently that mtDNA lineages have not sorted to reciprocal monophyly. We used coalescent analyses of three independent loci to distinguish between these two hypotheses. Two lines of evidence support introgression. First, analyses of the three loci combined show that some introgression is necessary to explain current genetic diversity in gadwalls. Second, we generated alternative predictions regarding time since divergence estimated from mtDNA: falcated ducks and gadwalls would have diverged between 65,000 and 700,000 years before present (ybp) under the introgression hypothesis and between 11,000 and 76,000 ybp under the incomplete lineage sorting hypothesis. The two independent nuclear introns indicated that these species diverged between 210,000 and 5,200,000 ybp, which did not overlap the predicted time for incomplete lineage sorting. These analyses also suggested that ancient introgression ( approximately 14,000 ybp) has resulted in the widespread distribution and high frequency of falcated-like mtDNA (5.5% of haplotypes) in North America. This is the first study to use a rigorous quantitative framework to reject incomplete lineage sorting as the cause of mitochondrial paraphyly.  相似文献   
82.
Coalescence of developing sporelings of Chondrus crispus Stackhouse was observed. Juvenile tetra-sporophytes showed a higher proportion of coalescence than developing gametophytes. Stages of complete coalescence between different sporelings are illustrated. Coalesced sporelings exhibit vertical and horizontal alignment of cells, as well as “cuticular” continuity and secondary pit connections between adjacent, coalesced sporelings. Ultimately the cells in the center of the coalesced sporelings produce upright, multiaxial fronds that grow more rapidly than fronds of non-coalesced sporelings. Other red algae, such as Gracilaria verrucosa (Hudson) Papenfuss and Gigartina stellata (Stackhouse) Batters also show a similar sequence of sporeling coalescence and enhanced growth. The ecological significance of sporeling coalescence is discussed.  相似文献   
83.
Aim Previous genetic studies of African savanna ungulates have indicated Pleistocene refugial areas in East and southern Africa, and recent palynological, palaeovegetation and fossil studies have suggested the presence of a long‐standing refugium in the south and a mosaic of refugia in the east. Phylogeographic analysis of the common eland antelope, Taurotragus oryx (Bovidae), was used to assess these hypotheses and the existence of genetic signatures of Pleistocene climate change. Location The sub‐Saharan savanna biome of East and southern Africa. Methods Mitochondrial DNA control‐region fragments (414 bp) from 122 individuals of common eland were analysed to elucidate the phylogeography, genetic diversity, spatial population structuring, historical migration and demographic history of the species. The phylogeographic split among major genetic lineages was dated using Bayesian coalescent‐based methods and a calibrated fossil root of 1.6 Ma for the split between the common eland and the giant eland, Taurotragus derbianus. Results Two major phylogeographic lineages comprising East and southern African localities, respectively, were separated by a net nucleotide distance of 4.7%. A third intermediate lineage comprised only three haplotypes, from Zimbabwe in southern Africa. The estimated mutation rate of 0.097 Myr?1 revealed a more recent common ancestor for the eastern lineage (0.21 Ma; 0.07–0.37) than for the southern lineage (0.35 Ma; 0.10–0.62). Compared with the latter, the eastern lineage showed pronounced geographic structuring, lower overall nucleotide diversity, higher population differentiation, and isolation‐by‐distance among populations. Main conclusions The data support the hypothesis of Pleistocene refugia occurring in East and southern Africa. In agreement with palynological, palaeovegetation and fossil studies, our data strongly support the presence of a longer‐standing population in the south and a mosaic of Pleistocene refugia in the east, verifying the efficacy of genetic tools in addressing such questions. The more recent origin of the common eland inhabiting East Africa could result from colonization following extinction from the region. Only two other dated African ungulate phylogenies have been published, applying different methods, and the similarity of dates obtained from the three distinct approaches indicates a significant event c. 200 ka, which left a strong genetic signature across a range of ungulate taxa.  相似文献   
84.
In long‐lived clonal plants, the overall size of a clone is often used to estimate clone age. The size of a clone, however, might be largely determined by physical or biotic interactions, obscuring the relationship between clone size and age. Here, we use the accumulation of mutations at 14 microsatellite loci to estimate clone age in trembling aspen (Populus tremuloides) from southwestern Canada. We show that the observed patterns of genetic divergence are consistent with a model of increasing ramet population size, allowing us to use pairwise genetic divergence as an estimator of clone age. In the populations studied, clone size did not exhibit a significant relationship with microsatellite divergence, indicating that clone size is not a good proxy for clone age. In P. tremuloides, the per‐locus per‐year neutral somatic mutation rate across 14 microsatellite loci was estimated to lie between 6 × 10?7 (lower bound) and 4 × 10?5 (upper bound).  相似文献   
85.
In a previous work, resting and acid-secreting rabbit gastric mucosa were freeze-fractured and shadowed at 45° with Pt-C. The shadow widths of proteic particles of tubulovesicle and canaliculus membranes were measured and compared. It was concluded that the frequency distributions of widths are significantly different in resting and secreting membranes and that each distribution accounts for several subpopulations of homogenous particles. In the present study, an attempt is made to describe the experimental distributions as a mixture of those of two major proteins, say A and B and their aggregates (AA, AB and BB). The modelling, although simple, gave a very satisfactory statistical fit between observed and computed distributions. The comparison of parameters calculated from histamine and ranitidine experimental data further improves the fits and finally, component A accounts for 69% of the particles. Most replica of A particles are heart-shaped and the median shadow widths are 6.1 and 6.8 nm in canaliculus and tubulovesicles respectively. The component B accounts for 31% of the particles. They mainly appear as small barrels and the median shadow widths are 8.8 and 10.3 nm in canaliculus and tubulovesicles respectively. According to calculated parameters and observed particle replica, the onset of secretion does not change the relative ratio of proteins but changes their shapes. Component A should be the (H+, K+)ATPase whereas debate on the identity of B is wide open.  相似文献   
86.
87.
88.
Isolation of populations eventually leads to divergence by genetic drift, but if connectivity varies over time, its impact on diversification may be difficult to discern. Even when the habitat patches of multiple species overlap, differences in their demographic parameters, molecular evolution and stochastic events contribute to differences in the magnitude and distribution of their genetic variation. The Indonesian island of Sulawesi, for example, harbours a suite of endemic species whose intraspecific differentiation or interspecific divergence may have been catalysed by habitat fragmentation. To further test this hypothesis, we have performed phylogenetic and coalescent-based analyses on molecular variation in mitochondrial and nuclear DNA of the Celebes toad (Bufo celebensis). Results support a role for habitat fragmentation that led to a population structure in these toads that closely matches distributions of Sulawesi macaque monkeys. Habitat fragmentation, therefore, may also have affected other groups on this island.  相似文献   
89.
Few genetic data document the postglacial history of the western house mouse, Mus musculus domesticus. We address this by studying a sample from the southeastern tip of the Fertile Crescent in the Iranian province of Ahvaz. Including other published and unpublished data from France, Germany, Italy, Bulgaria, Turkey and other places in Iran, altogether 321 mitochondrial D-loop sequences are simultaneously analysed. The patterns of coalescence obtained corroborate the classical proposal according to which the Fertile Crescent is where commensalism with humans has started in the Western Hemisphere, and from where the subspecies has expanded further west. Our data also clearly show that despite multiple colonisations and long-range transportation, there is still a rather high PhiST of 0.39. The original expansion signal is still recognisable, with two well-separated derived clades, allowing us to propose a hypothetical scenario in which expansion toward Europe and Asia Minor took at least two routes, tentatively termed the Mediterranean and the Bosphorus/Black Sea routes. This scenario resembles that of another domesticated species, the goat, and fits with the known progression of Neolithic culture. Given the concomitance of both phenomena around 12,000 years ago, we propose a recalibration of the D-loop mutation rate to a much faster tick of approximately 40% per site per million years (Myr). This value should be used for intrasubspecific polymorphism, while the interspecific rate in Mus is presently estimated at 6-10%/site/Myr. This is in keeping with the now well recognised fact that only a subfraction of segregating mutations go to fixation.  相似文献   
90.
Large-scale sequencing of short mtDNA fragments for biodiversity inventories ('DNA barcoding') indicates that sequence variation in animal mtDNA is highly structured and partitioned into discrete genetic clusters that correspond broadly to species-level entities. Here we explore how the migration rate, an important demographic parameter that is directly related to population isolation, might affect variation in the strength of mtDNA clustering among taxa. Patterns of mtDNA variation were investigated in two groups of beetles that both contain lineages occupying habitats predicted to select for different dispersal abilities: predacious diving beetles (Dytiscidae) in the genus Bidessus from lotic and lentic habitats across Europe and darkling beetles (Tenebrionidae) in the genus Eutagenia from sand and other soil types in the Aegean Islands. The degree of genetic clustering was determined using the recently developed 'mixed Yule coalescent' (MYC) model that detects the transition from between-species to within-population branching patterns. Lineages from presumed stable habitats, and therefore displaying lower dispersal ability and migration rates, showed greater levels of mtDNA clustering and geographical subdivision than their close relatives inhabiting ephemeral habitats. Simulations of expected patterns of mtDNA variation under island models showed that MYC clusters are only detected when the migration rates are much lower than the value of Nm=1 typically used to define the threshold for neutral genetic divergence. Therefore, discrete mtDNA clusters provide strong evidence for independently evolving populations or species, but their formation is suppressed even under very low levels of dispersal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号