首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7506篇
  免费   544篇
  国内免费   556篇
  8606篇
  2024年   16篇
  2023年   106篇
  2022年   120篇
  2021年   136篇
  2020年   221篇
  2019年   217篇
  2018年   211篇
  2017年   253篇
  2016年   233篇
  2015年   211篇
  2014年   247篇
  2013年   513篇
  2012年   227篇
  2011年   325篇
  2010年   223篇
  2009年   386篇
  2008年   415篇
  2007年   380篇
  2006年   321篇
  2005年   336篇
  2004年   301篇
  2003年   246篇
  2002年   236篇
  2001年   203篇
  2000年   208篇
  1999年   191篇
  1998年   153篇
  1997年   162篇
  1996年   147篇
  1995年   126篇
  1994年   148篇
  1993年   145篇
  1992年   139篇
  1991年   134篇
  1990年   122篇
  1989年   98篇
  1988年   69篇
  1987年   84篇
  1986年   54篇
  1985年   85篇
  1984年   95篇
  1983年   50篇
  1982年   71篇
  1981年   59篇
  1980年   57篇
  1979年   32篇
  1978年   28篇
  1977年   25篇
  1976年   16篇
  1973年   8篇
排序方式: 共有8606条查询结果,搜索用时 15 毫秒
991.
A comparative study was carried out on the growth and production of alkaline proteases by two Vibrio species using different marine peptones from fish viscera residues. The bacteria tested, Vibrio anguillarum and Vibrio splendidus, are producers of high levels of proteolytic enzymes which act as factors of virulence in fish cultures, causing high mortality rates. The kinetic assays and subsequent comparison with the parameters obtained from the adjustment to various mathematical models, highlighted the potential interest of the media formulated, for their possible production on an industrial scale, particularly the production of proteases by V. anguillarum growing in rainbow trout and squid peptones.  相似文献   
992.
In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50–80°C and pH 6.0–8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA–DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542T). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.  相似文献   
993.
One fungus, tentatively named Penicillium sp. Li-3, was screened to biosynthesize β-d-mono-glucuronide-glycyrrhizin (GAMG), directly. Using glycyrrhizin as elicitor and the sole carbon source, this strain was capable of expressing β-d-glucuronidase, one intracellular enzyme with high substrate specificity. And glycyrrhizin was hydrolyzed directly into GAMG by enzyme from Penicillium sp. Li-3 with high production. It was found that the mol conversion ratio of this reaction was up to 88.45%. Research about kinetics of β-d-glucuronidase production showed that the cell growth and enzyme production of this strain was partial coupled. During the expressing of target enzyme, carbon catabolite repression existed, so only glycyrrhizin was the best carbon source as well as the elicitor. It was found that the surfactant (Tween 80 0.12%) could improve the ability of enzyme production markedly. Under the condition of initial pH 4.8 of the medium and 32 °C of the culture temperature, the maximum enzyme activity of 181.53 U ml−1 was obtained.  相似文献   
994.
The Ecosystem Approach to Fisheries requires that managers take account of the environmental impacts of fishing. We develop linked state and pressure indicators that show the impact of bottom-trawling on benthic communities. The state indicator measures the proportion of an area where benthic invertebrate biomass (B) or production (P) is more than 90% of pristine benthic biomass (B 0.9) or production (P0.9). The pressure indicator measures the proportion of the area where trawling frequency is sufficiently high to prevent reaching predicted B0.9 or P0.9. Time to recovery to B0.9 and P0.9 after trawling, depending on the habitat, was estimated using a validated size-based model of the benthic community. Based on trawling intensity in 2003, 53.5% of the southern North Sea was trawled too frequently for biomass to reach B0.9, and 27.1% was trawled too frequently for production to reach P0.9. As a result of bottom-trawling in 2003, in 56% of the southern North Sea benthic biomass was below B0.9, whereas in 27% of the southern North Sea benthic production was below P0.9. Modeled recovery times were comparable to literature estimates (2.5 to more than 6 years). The advantages of using the area with an ecological impact of trawling as a pressure indicator are that it is conceptually easy to understand, it responds quickly to changes in management action, it can be implemented at a relevant scale for fisheries management, and the necessary effort distribution data are centrally collected. One of this approach’s greatest utilities, therefore, will be to communicate to policy makers and fishing enterprises the expected medium- to long-term ecological benefits that will accrue if the frequency of trawling in particular parts of fishing grounds is reduced.  相似文献   
995.
Understanding the interactions between terrestrial and aquatic ecosystems remains an important research focus in ecology. In arid landscapes, catchments are drained by a channel continuum that represents a potentially important driver of ecological pattern and process in the surrounding terrestrial environment. To better understand the role of drainage networks in arid landscapes, we determined how stream size influences the structure and productivity of riparian vegetation, and the accumulation of organic matter (OM) in soils beneath plants in an upper Sonoran Desert basin. Canopy volume of velvet mesquite (Prosopis velutina), as well as overall plant cover, increased along lateral upland–riparian gradients, and among riparian zones adjacent to increasingly larger streams. Foliar δ13C signatures for P. velutina suggested that landscape patterns in vegetation structure reflect increases in water availability along this arid stream continuum. Leaf litter and annual grass biomass production both increased with canopy volume, and total aboveground litter production ranged from 137 g m−2 y−1 in upland habitat to 446 g m−2 y−1 in the riparian zone of the perennial stream. OM accumulation in soils beneath P. velutina increased with canopy volume across a broad range of drainage sizes; however, in the riparian zone of larger streams, flooding further modified patterns of OM storage. Drainage networks represent important determinants of vegetation structure and function in upper Sonoran Desert basins, and the extent to which streams act as sources of plant-available water and/or agents of fluvial disturbance has implications for material storage in arid soils.  相似文献   
996.
AIMS: To examine the potential of Lactobacillus delbrueckii mutant, Uc-3 to produce lactic acid and fructose from sucrose-based media. METHODS AND RESULTS: The mutant of L. delbrueckii NCIM 2365 was cultivated in shake flask containing hydrolysed cane sugar (sucrose)-based medium. The lactic acid yield and volumetric productivity with hydrolysed cane concentration up to 200 g l(-1) were in the range of 92-97% of the theoretical value and between 2.7 and 3.8 g l(-1) h(-1), respectively. The fructose fraction of the syrup produced was more than 95% when the total initial sugar concentration in the medium was higher (150-200 g l(-1)). There are no unwanted byproducts detected in the fermentation broth. CONCLUSIONS: We demonstrated that L. delbrueckii mutant Uc-3 was able to utilize glucose preferentially to produce lactic acid and fructose from hydrolysed cane sugar in batch fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings will be useful in the production of lactic acid and high fructose syrups using media with high concentrations of sucrose-based raw materials. This approach can lead to modification of the traditional fermentation processes to obtain value-added byproducts, attaining better process economics.  相似文献   
997.
AIMS: To produce more thermotolerable conidia of Beauveria bassiana, a well-known fungal biocontrol agent, by optimizing the medium components and culture conditions. METHODS AND RESULTS: The conidia produced on media including 0.5-6% glucose, sucrose or starch as carbon source and 50-300-microg ml(-1) Cu2+, Zn2+, Mn2+ or Fe3+ as additive to Sabouraud dextrose medium at 15-30 degrees C, pH 4-8 or KCl-adjusted water availabilities were exposed to 30-min wet heat stress at 48 degrees C. The medium components for conidial production with greatly enhanced thermotolerance included 4% glucose as optimum or 1% starch as alternative for the carbon source and < or =50-microg ml(-1) Mn2+ for the metal additive. The culture conditions were optimized as 25 degrees C and pH 5-6. Conidial thermotolerance decreased remarkably when sucrose and Fe3+ or Cu2+ were used in the cultures, but altered slightly when 50-200-microg ml(-1) Zn2+ were included. CONCLUSIONS: The tolerance of B. bassiana conidia to the thermal stress was significantly affected by the medium composition and culture conditions under which the conidia were produced. SIGNIFICANCE AND IMPACT OF THE STUDY: Proper treatment of small grains as mass production substrates for more glucose release and supplement of glucose or 50-microg ml(-1) Mn2+ are possible means to enhancing conidial thermotolerance and field persistence for improved insect control.  相似文献   
998.
The objective of the present study was to characterize the metabolism of Clostridium thermolacticum, a thermophilic anaerobic bacterium, growing continuously on lactose (10 g l−1) and to determine the enzymes involved in the pathways leading to the formation of the fermentation products. Biomass and metabolites concentration were measured at steady-state for different dilution rates, from 0.013 to 0.19 h−1. Acetate, ethanol, hydrogen and carbon dioxide were produced at all dilution rates, whereas lactate was detected only for dilution rates below 0.06 h−1. The presence of several key enzymes involved in lactose metabolism, including beta-galactosidase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate:ferredoxin oxidoreductase, acetate kinase, ethanol dehydrogenase and lactate dehydrogenase, was demonstrated. Finally, the intracellular level of NADH, NAD+, ATP and ADP was also measured for different dilution rates. The production of ethanol and lactate appeared to be linked with the re-oxidation of NADH produced during glycolysis, whereas hydrogen produced should come from reduced ferredoxin generated during pyruvate decarboxylation. To produce more hydrogen or more acetate from lactose, it thus appears that an efficient H2 removal system should be used, based on a physical (membrane) or a biological approach, respectively, by cultivating C. thermolacticum with efficient H2 scavenging and acetate producing microorganisms.  相似文献   
999.
The current study presents phenology data for Rhizophora mangle from two equatorial mangrove stands with different salinity regimes in Brazil. Observations based on litter fall and individual shoot development were compared and related to environmental factors. Patterns observed in litter fall were consistent with results of direct monitoring. While both reproductive organs and leaves were produced throughout the year, rates of formation followed seasonal trends. Distinct differences in propagule production between low and high salinity sites and between years of observation were detected; main propagule release was, however, restricted to the wet season which offers enhanced conditions for propagule establishment. Emergence of flowers was linked to leaf production. While there was no obvious single peak in leaf production, it was reduced towards the end of the dry season at both high and low salinity sites. Time series analysis revealed an independent pattern of leaf development superimposed on this annual seasonal trend, indicating slower development of leaf primordia during periods of low light availability in the wet season. No significant difference in age structure was detected between sun and shade leaves; maximum leaf life-time was approximately 1 year.  相似文献   
1000.
Current knowledge about the abundance, growth, and primary production of the seagrass Cymodocea nodosa (Ucria) Ascherson is biased towards shallow (depth <3 m) meadows although this species also forms extensive meadows at larger depths along the coastlines. The biomass and primary production of a C. nodosa meadow located at a depth of 8–11 m was estimated at the time of maximum annual vegetative development (summer) using reconstruction techniques, and compared with those available from shallow meadows of this species. A depth-referenced data base of values at the time of maximum annual development was compiled to that end. The vegetative development of C. nodosa at 8–11 m depth was not different from that achieved by shallow (depth <3 m) meadows of this species. Only shoot density, which decreased from 1637 to 605 shoots m−2, and the annual rate of elongation of the horizontal rhizome, which increased from 23 to 71 cm apex−1 year−1, were different as depth increased from <3 to 8–11 m. Depth was a poor predictor of the vegetative development and primary production of C. nodosa. The biomass of rhizomes and roots decreased with depth (g DW m−2 = 480 (±53, S.E.) − 32 (±15, S.E.) depth (in m); R2 = 0.12, F = 4.65, d.f. = 35, P = 0.0381) which made total biomass of the meadow to show a trend of decrease with depth but the variance of biomass data explained by depth was low. The annual rate of elongation of the horizontal rhizome showed a significant positive relationship with depth (cm apex−1 year−1 = 18 (±5.1, S.E.) + 5.0 (±1.33, S.E.) depth (in m); R2 = 0.50, F = 14.07, d.f. = 14, P = 0.0021). As shoot size and growth did not change significantly with depth, the reduction of shoot density should drive any changes of biomass and productivity of C. nodosa as depth increases. The processes by which this reduction of C. nodosa abundance with depth occur remain to be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号