首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1160篇
  免费   75篇
  国内免费   36篇
  2024年   3篇
  2023年   23篇
  2022年   22篇
  2021年   28篇
  2020年   22篇
  2019年   40篇
  2018年   17篇
  2017年   32篇
  2016年   33篇
  2015年   32篇
  2014年   44篇
  2013年   53篇
  2012年   49篇
  2011年   35篇
  2010年   36篇
  2009年   43篇
  2008年   48篇
  2007年   51篇
  2006年   56篇
  2005年   38篇
  2004年   51篇
  2003年   49篇
  2002年   52篇
  2001年   29篇
  2000年   36篇
  1999年   30篇
  1998年   38篇
  1997年   23篇
  1996年   29篇
  1995年   30篇
  1994年   32篇
  1993年   12篇
  1992年   35篇
  1991年   19篇
  1990年   18篇
  1989年   13篇
  1988年   10篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   9篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1271条查询结果,搜索用时 281 毫秒
31.
Choanoflagellates and sponges feed by filtering microscopic particles from water currents created by the flagella of microvillar collar complexes situated on the cell bodies of the solitary or colonial choanoflagellates and on the choanocytes in sponges. The filtering mechanism has been known for more than a century, but only recently has the filtering process been studied in detail and also modelled, so that a detailed picture of the water currents has been obtained. In the solitary and most of the colonial choanoflagellates, the water flows freely around the cells, but in some forms, the cells are arranged in an open meshwork through which the water can be pumped. In the sponges, the choanocytes are located in choanocyte chambers (or choanocyte areas) with separate incurrent and excurrent canals/pores located in a larger body, which enables a fixed pattern of water currents through the collar complexes. Previous theories for the origin of sponges show evolutionary stages with choanocyte chambers without any opening or with only one opening, which makes separation of incurrent and excurrent impossible, and such stages must have been unable to feed. Therefore a new theory is proposed, which shows a continuous evolutionary lineage in which all stages are able to feed by means of the collar complexes.  相似文献   
32.
The proton pumping ATPase in the plasma membrane of Elodea canadensis is believed to play a major role in inorganic carbon acquisition. To investigate potentially different carbon uptake strategies within the same plant, plasma membrane H+-ATPase distribution and polar current patterns were investigated in Elodea leaves and stems. Specific activity of plasma membrane H+-ATPase in leaf microsomal fractions was tenfold higher than in stem derived microsomes. Probing western blots with a monoclonal antibody specific for plasma membrane H+-ATPase, yielded strongly visible double bands at 100 kDa in leaf microsome preparations, whereas little antigen was detected in analogous stem microsome preparations. Using the same plasma membrane H+-ATPase specific antibody on tissue sections, the enzyme was found almost exclusively localized at the border of cells at the lower leaf surface. A positive ion current leaving the lower leaf surface was measured, using a vibrating probe device. Part of this current entered the upper leaf surface and part of it the internodes of the stem. The experimental results support the view, that Elodea leaves have different means of inorganic carbon uptake than stem internodes.  相似文献   
33.
This is the first report of spontaneous bioluminescence in the autotrophic dinoflagellate Ceratocorys horrida von Stein. Bioluminescence was measured, using an automated data acquisition system, in a strain of cultured cells isolated from the Sargasso Sea. Ceratocorys horrida is only the second dinoflagellate species to exhibit rhythmicity in the rate of spontaneous flashing, flash quantum flux (intensity), and level of spontaneous glowing. The rate of spontaneous flashing was maximal during hours 2–4 of the dark phase [i.e. circadian time (CT)16–18 for a 14:10 h LD cycle (LD14:10)], with approximately 2% of the population flashing-min?1, a rate approximately one order of magnitude greater than that of the dinoflagellate Gonyaulax polyedra. Flash quantum flux was also maximal during this period. Spontaneous flashes were 134 ms in duration with a maximum flux (intensity) of 3.1×109 quanta-s?1. Light emission presumably originated from blue fluorescent microsources distributed in the cell periphery and not from the spines. Values of both spontaneous flash rate and maximum flux were independent of cell concentration. Isolated cells also produced spontaneous flashes. Spontaneous glowing was dim except for a peak of 6.4× 104quanta-s?1 cell?1, which occurred at CT22.9 for LD14:10 and at CT22.8 for LD12:12. The total integrated emission of spontaneous flashing and glowing during the dark phase was 4×109 quantacell?1, equivalent to the total stimulable luminescence. The rhythms for C. horrida flash and glow behavior were similar to those of Gonyaulax polyedra, although flash rate and quantum flux were greater. Spontaneous bioluminescence in C. horrida may be a circadian rhythm because it persisted for at least three cycles in constant dark conditions. This is also the first detailed study of the stimulated bioluminescence of C. horrida, which also displayed a diurnal rhythm. Cultures exhibited >200 times more mechanically stimulated bioluminescence during the dark phase than during the light phase. Mechanical stimulation during the dark phase resulted in 6.7 flashes. cell?1; flashes were brighter and longer in duration than spontaneous flashes. Cruise-collected cells exhibited variability in quantum flux with few differences in flash kinetics. The role of dinoflagellate spontaneous bioluminescence in the dynamics of near-surface oceanic communities is unknown, but it may be an important source of natural in situ bioluminescence.  相似文献   
34.
Cells in the pacemaker region of toad (Bufo marinus) sinus venosus had spontaneous rhythmic action potentials. The rate of firing of action potentials, the rate of diastolic depolarization and the maximum rate of rise of action potentials were reduced by TTX (10 nm to 1 m). Currents were recorded with the whole cell, tight seal technique from cells enzymatically dissociated from this region. Cells studied were identified as pacemaker cells by their characteristic morphology, spontaneous rhythmic action potential activity that could be blocked by cobalt but not by TTX and lack of inward rectification. When calcium, potassium and nonselective cation currents (If) activated by hyperpolarization were blocked, depolarization was seen to generate transient and persistent inward currents. Both were sodium currents: they were abolished by tetrodotoxin (10 to 100 nm), their reversal potential was close to the sodium equilibrium potential and their amplitude and reversal potential were influenced as expected for sodium currents when extracellular sodium ions were replaced with choline ions. The transient sodium current was activated at potentials more positive than –40 mV while the persistent sodium current was obvious at more negative potentials. It was concluded that, in toad pacemaker cells, TTX-sensitive sodium currents contributing both to the upstroke of action potentials and to diastolic depolarization may play an important role in setting heart rate.We thank the Australian National Heart Foundation for their support. D.A.S. is an NHMRC Senior Research Officer.  相似文献   
35.
Internodal and whorl (branch) cells of the green alga,Chara corallina Klein ex Willd., em. R.D.W., were studied with the extracellular vibrating probe for measuring transmembrane ion currents, and with an extracellular pH microprobe for measuring the surface pH profile. Bands of positive inward current (OH- efflux) 1–3 mm wide were separated by wider bands of outward current (HCO 3 - influx) along the length of the cell. The measured peaks of inward current ranged from 20 to 60 A cm-2 (98 m from the cell surface) which would correspond to a surface ionic flux of 270–800 pmol cm-2 s-1. The peaks of outward current (HCO 3 - influx) ranged from 10 to 30 A cm-2 which would correspond to a surface ionic flux of 140–400 pmol cm-2 s-1. The inward current bands matched the regions of surface alkalinity very well. The outward current (HCO 3 - influx) was reduced at least 10-fold in low-HCO 3 - medium, with a commensurate readjustment in the strength and pattern of inward current (OH- efflux). (Although these experiments involved a manipulation of the external pH, it is felt that the main adjustment in current patterns was in response to the reduction in exogenous HCO 3 - ). The presence of the vibrating probe perturbed the inward current region when vibrating with a 26-m amplitude, but this perturbation was eliminated when a 7-m amplitude was used. The perturbation was usually observed as a reduction in the number of inward current peaks with an increase (approximate doubling) in the amplitudes of the one or two remaining peaks. Both the inward and outward currents were light-dependent, falling off within seconds of light removal.  相似文献   
36.
The complete genetic information contained in the influenza virus RNA segment 7 of the A/Bangkok/ 179 (H3N2) strain has been cloned by in vitro synthesis of the complementary dsDNA and its insertion into plasmid pBR322. The nucleotide sequence of the viral RNA segment has been determined from the cDNA insert. It is 1027 nucleotides long, and contains two open reading frames, as shown for other influenza virus strains. When compared with the previously published sequence for the A/Udorn/72 (H3N2) strain, 15 nucleotide exchanges are observed, most of them silent mutations, and only two causing amino acid changes in each of the M1 and M2 protein sequences.  相似文献   
37.
Summary The effects of calmodulin (CaM) antagonists (W-7, W-5, trifluoperazine, chlorpromazine, quinacrine, diazepam, propericyazine and carmidazolium) on the sodium and potassium channels were studied on the intracellularly perfused and voltage-clamped giant axon of the squid. It was found that the drugs are more potent blockers of the sodium current than of the potassium current. The drugs also reduce the sodium gating current. The blockage of the sodium and gating current can be explained by assuming that the drugs interact with the sodium gating subunit in one of its closed states. The site of action is probably the intracellular surface of the axolemma where presumably a Ca2+-calmodulin complex can be formed.  相似文献   
38.
Summary The effect of vasopressin on voltage-sensitive Ca2+ currents in the rat insulinoma cell line RINm5F has been investigated in patch-clamp whole-cell and single-channel current recording experiments. In the whole-cell recording configuration the dominant inward current in the presence of tetrodotoxin was noninactivating and had a high voltage threshold. This current was much enhanced when external Ca2+ was replaced by Ba2+ and was blocked by 1 m nifedipine. It can therefore be classified as an L-current. Vasopressin enhanced the L-current without changing the voltage threshold of activation or the voltage at which the peak current was observed. Vasopressin effects were seen at concentrations as low as 0.01nm, and the maximal effect was observed at about 1nm. In higher concentrations the vasopressin effects were weaker, with effects at 50nm of about the same magnitude as at 0.01nm. In single-channel current recording experiments carried out with the cell-attached configuration there were no effects on single L-channel currents when vasopressin was added to the bath solution, but in experiments in which vasopressin (5nm) was infused into the patch pipette a marked increase in the apparent channel open state probability was observed. We conclude that vasopressin, a peptide that is known to markedly enhance glucose-evoked insulin secretion, stimulates opening of the voltage-sensitive Ca2+ channels in insulin-secreting cells.  相似文献   
39.
Summary Voltage-dependent calcium currents were studied in cultured adult mouse pancreatic B-cells using the whole-cell voltage-clamp technique. When calcium currents were elicited with 10-sec depolarizing command pulses, the time course of inactivation was well fit by the sum of two exponentials. The more rapidlyinactivating component had a time constant of 75±5 msec at 0 mV and displayed both calcium influx- and voltage-dependent inactivation, while the more slowly-inanctivating component had a time constant of 2750±280 msec at 0 mV and inactivated primarily via voltage. The fast component was subject to greater steady-state inactivation at holding potentials between –100 and –40 mV and activated at a lower voltage threshold. This component was also significantly reduced by nimodipine (0.5 m) when a holding potential of –100 mV was used, whereas the slow component was unaffected. In contrast, the slow component was greatly increased by replacing external calcium with barium, while the fast component was unchanged. Cadmium (1–10 m) displayed a voltage-dependent block of calcium currents consistent with a greater effect on the high-threshold, more-slowly inactivating component. Taken together, the data suggest that cultured mouse B-cells, as with other insulin-secreting cells we have studied, possess at least two distinct calcium currents. The physiological significance of two calcium currents having distinct kinetic and steady-state inactivation characteristics for B-cell burst firing and insulin secretion is discussed.  相似文献   
40.
With reports of either no change or reduction of blood pressure, the relationship between selenium and blood pressure has not been clear. Normal Se values are not available for the Sprague Dawley (SD) rat or in the young and adult rat with various models of experimental hypertension. This study measured serum Se levels in the young and adult normotensive (NT), Grollman renal hypertensive (RH), and Okamoto-Aoki spontaneous hypertensive rats (SHR). The young animals have statistically significant (P<0.001) lower Se values as measured by the fluorometric method than those found at adulthood. Selenium levels were found to be altered in the adult SHR animals when compared with the RH and NT animals. The serum Se value for the normotensive SD rat was found to be 65.0±3.5 μg/dL, and for the two experimental models, 63.7±4.6 μg/dL for the RH, whereas the SHR level was elevated to 75.04±4.8 μg/dL (P<0.001). Elevated serum Se values in the adult SHR animals suggests an altered metabolism in SHR animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号