首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3137篇
  免费   397篇
  国内免费   123篇
  2024年   8篇
  2023年   98篇
  2022年   121篇
  2021年   173篇
  2020年   160篇
  2019年   213篇
  2018年   172篇
  2017年   148篇
  2016年   129篇
  2015年   205篇
  2014年   225篇
  2013年   243篇
  2012年   143篇
  2011年   140篇
  2010年   100篇
  2009年   145篇
  2008年   136篇
  2007年   114篇
  2006年   110篇
  2005年   101篇
  2004年   114篇
  2003年   102篇
  2002年   70篇
  2001年   55篇
  2000年   59篇
  1999年   51篇
  1998年   49篇
  1997年   28篇
  1996年   24篇
  1995年   20篇
  1994年   23篇
  1993年   16篇
  1992年   18篇
  1991年   8篇
  1990年   13篇
  1989年   12篇
  1988年   14篇
  1987年   5篇
  1986年   14篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1982年   10篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   6篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有3657条查询结果,搜索用时 15 毫秒
961.
Assembly of collagen into microribbons: effects of pH and electrolytes   总被引:3,自引:0,他引:3  
Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.  相似文献   
962.
The C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm. Biochemical experiments and confocal microscopy indicate that DC-SIGN microdomains reside within lipid rafts. Finally, we show that the organization of DC-SIGN in microdomains on the plasma membrane is important for binding and internalization of virus particles, suggesting that these multimolecular assemblies of DC-SIGN act as a docking site for pathogens like HIV-1 to invade the host.  相似文献   
963.
Kerr EM  Fry SC 《Planta》2004,219(1):73-83
Cell-suspension cultures of maize (Zea mays L.) released soluble extracellular polysaccharides (SEPs) into their medium. Some or all of the SEPs had feruloyl ester groups. Pulse-labelling with [3H]arabinose was used to monitor changes in the SEPs Mr (estimated by gel-permeation chromatography) with time after synthesis. Newly released 3H-SEPs were 1.3–1.6 MDa, but between 2 days and 3 days after radiolabelling (in one experiment) or between 5 days and 6 days (in another), the 3H-SEPs abruptly increased to 17 MDa, indicating extensive cross-linking. The cross-linking involved both [3H]xylan and [3H]xyloglucan components of the SEPs. The cross-links could be cleaved by alkali, returning the SEPs to their original Mr. In 0.1 M NaOH at 37°C, 58% cleavage was effected within 24 h. The requirement for such prolonged alkali treatment indicates that ester-bonded (e.g. diferuloyl) groups were not solely responsible for the cross-linking. Bonds cleaved only by relatively severe alkali could include benzyl ether linkages formed between sugar residues and oxidised phenolics that had quinone methide structures. The ability of alkali to cleave the cross-links was independent of the age of the 3H-SEP molecules. Cross-linking of 3H-SEPs in vivo was delayed (up to approx. 7 days after radiolabelling) by exogenous sinapic acid, chlorogenic acid or rutin—agents predicted to compete with the oxidative coupling of feruloyl-polysaccharides. The cross-linking was promoted by exogenous ferulic acid or l-tyrosine, possibly because these compounds acted as precursors for polysaccharide feruloylation, thus providing additional partner substrates for the oxidative coupling of previously formed 3H-SEPs. The ability of certain phenolics to prevent the cross-linking of 3H-SEPs supports the idea that the cross-linking involved phenolic oxidation.Abbreviations DTT Dithiothreitol - Kav Elution volume relative to those of high-Mr dextran (Kav=0) and sucrose (Kav=1) - MLG Mixed-linkage -(13),(14)-d-glucan - Mr Relative molecular mass - PCW Primary cell wall - SEP Soluble extracellular polysaccharide - TFA Trifluoroacetic acid - V0 Void volume (centre of elution peak of high-Mr dextran) - Vi Totally included volume (centre of elution peak of sucrose)  相似文献   
964.
Peng R  Gallwitz D 《The EMBO journal》2004,23(20):3939-3949
Sec1/Munc18 (SM) proteins are central to intracellular transport and neurotransmitter release but their exact role is still elusive. Several SM proteins, like the neuronal N-Sec1 and the yeast Sly1 protein, bind their cognate t-SNAREs with high affinity. This has been thought to be critical for their function. Here, we show that various mutant forms of Sly1p and the Golgi-localized syntaxin Sed5p, which abolish their high-affinity interaction, are fully functional in vivo, indicating that the tight interaction of the two molecules per se is not relevant for proper function. Mutant Sly1p unable to bind Sed5p is excluded from core SNARE complexes, also demonstrating that Sly1p function is not directly coupled to assembled SNARE complexes thought to execute membrane fusion. We also find that wild-type Sly1p and mutant Sly1p unable to bind Sed5p directly interact with selected ER-to-Golgi and intra-Golgi nonsyntaxin SNAREs. The newly identified, direct interactions of the SM protein with nonsytaxin SNAREs might provide a molecular mechanism by which SNAREs can be activated to engage in pairing and assemble into fusogenic SNARE complexes.  相似文献   
965.
The H2-splitting active site of [NiFe] hydrogenases is tightly bound to the protein matrix via four conserved cysteine residues. In this study, the nickel-binding cysteine residues of HoxC, the large subunit of the H2-sensing regulatory hydrogenase (RH) from Ralstonia eutropha, were replaced by serine. All four mutant proteins, C60S, C63S, C479S, and C482S, were inactive both in H2 sensing and H2 oxidation and did not adopt the native oligomeric structure of the RH. Nickel was bound only to the C482S derivative. The assembly of the [NiFe] active site is a complex process that requires the function of at least six accessory proteins. Among these proteins, HypC has been shown to act as a chaperone for the large subunit during the maturation process. Immunoblot analysis revealed the presence of a strong RH-dependent HypC-specific complex in extracts containing the C60S, C63S, and C482S derivatives, pointing to a block in maturation for these mutant proteins. The lack of this complex in the extract containing C479S indicates that this specific cysteine residue might be crucial for the interaction between HoxC and HypC.This work is dedicated to Prof. H.G. Schlegel on the occasion of his 80th birthday.  相似文献   
966.
Salmonella hook-length control protein FliK, which consists of 405 amino acid residues, switches substrate specificity of the type III flagellar protein export apparatus from rod/ hook-type to filament-type by causing a conformational change in the cytoplasmic domain of FlhB (FlhB(C)) upon completion of the hook assembly. An N-terminal region of FliK contains an export signal, and a highly conserved C-terminal region consisting of amino acid residues 265-405 (FliK((265-405))) is directly involved in the switching of FlhB(C). Here, we have investigated the structural properties of FliK. Gel filtration chromatography, multi-angle light scattering and analytical ultracentrifugation showed that FliK is monomeric in solution and has an elongated shape. Limited proteolysis showed that FliK consists of two domains, the N-terminal (FliK(N)) and C-terminal domains (FliK(C)), and that the first 203 and the last 35 amino acid residues are partially unfolded and subjected to proteolysis. Both FliK(N) and FliK(C) are more globular than full-length FliK, suggesting that these domains are connected in tandem. Overproduced His-FliK((199-405)) failed to switch export specificity of the export apparatus. Affinity blotting revealed that FlhB(C) binds to FliK and FliK((1-147)), but not to FliK((265-405)). Based on these results, we propose that FliK(N) within the central channel of the hook-basal body during the export of FliK is the sensor and transmitter of hook completion information and that the binding interaction of FliK(C) to FlhB(C) is structurally regulated by FliK(N) so as to occur only when the hook has reached a preset length. The conformational flexibility of FliK(C) may play a role in interfering with switching at an inappropriate point of flagellar assembly.  相似文献   
967.
Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the "labeled" nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.  相似文献   
968.
Sesbania mosaic virus (SeMV) capsids are stabilized by RNA-protein, protein-protein and calcium-mediated protein-protein interactions. The removal of calcium has been proposed to be a prerequisite for the disassembly of the virus. The crystal structure of native T=3 SeMV capsid revealed that residues D146 and D149 from one subunit and Y205, N267 and N268 of the neighboring subunit form the calcium-binding site (CBS). The CBS environment is found to be identical even in the recombinant CP-NDelta65 T=1 capsids. Here, we have addressed the role of calcium and the residues involved in calcium co-ordination in the assembly and stability of T=3 and T=1 capsids by mutational analysis. Deletion of N267 and N268 did not affect T=3 or T=1 assembly, although the capsids were devoid of calcium, suggesting that assembly does not require calcium ions. However, the stability of the capsids was reduced drastically. Site-directed mutagenesis revealed that either a single mutation (D149N) or a double mutation (D146N-D149N) of SeMV coat protein affected drastically both the assembly and stability of T=3 capsids. On the other hand, the D146N-D149N mutation in CP-NDelta65 did not affect the assembly of T=1 capsid, although their stability was reduced considerably. Since the major difference between the T=3 and T=1 capsids is the absence of the N-terminal arginine-rich motif (N-ARM) and the beta-annulus from the subunits forming the T=1 capsids, it is possible that D149 initiates the N-ARM-RNA interactions that lead to the formation of the beta-annulus, which is essential for T=3 capsid assembly.  相似文献   
969.
Sesbania mosaic virus particles consist of 180 coat protein subunits of 29kDa organized on a T=3 icosahedral lattice. N-terminal deletion mutants of coat protein that lack 36 (CP-NDelta36) and 65 (CP-NDelta65) residues from the N terminus, when expressed in Escherichia coli, produced similar T=1 capsids of approximate diameter 20nm. In contrast to the wild-type particles, these contain only 60 copies of the truncated protein subunits (T=1). CP-NDelta65 lacks the "beta-annulus" believed to be responsible for the error-free assembly of T=3 particles. Though the CP-NDelta36 mutant has the beta-annulus segment, it does not form a T=3 capsid, presumably because it lacks an arginine-rich motif found close to the amino terminus. Both CP-NDelta36 and CP-NDelta65 T=1 capsids retain many key features of the T=3 quaternary structure. Calcium binding geometries at the coat protein interfaces in these two particles are also nearly identical. When the conserved aspartate residues that coordinate the calcium, D146 and D149 in the CP-NDelta65, were mutated to asparagine (CP-NDelta65-D146N-D149N), the subunits assembled into T=1 particles but failed to bind calcium ions. The structure of this mutant revealed particles that were slightly expanded. The analysis of the structures of these mutant capsids suggests that although calcium binding contributes substantially to the stability of T=1 particles, it is not mandatory for their assembly. In contrast, the presence of a large fraction of the amino-terminal arm including sequences that precede the beta-annulus and the conserved D149 appear to be indispensable for the error-free assembly of T=3 particles.  相似文献   
970.
CuBrSe3 has been synthesized by the reaction between CuBr2 and Se in ethylene glycol (EG) solvent at 100 °C. In the process, CuBr2 was reduced to brom-complexes of Cu(I), such as , the complexes participated in the reaction as intermediates. Based on experimental results and the structure characterization of CuBrSe3 crystal, a possible mechanism for CuBrSe3 formation was proposed. The mechanism suggests that Se chains assembly with the brom-complexes of Cu(I) to form CuBr helical chains, and then CuBrSe3 crystal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号