首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3126篇
  免费   398篇
  国内免费   121篇
  2024年   7篇
  2023年   90篇
  2022年   118篇
  2021年   173篇
  2020年   160篇
  2019年   213篇
  2018年   172篇
  2017年   148篇
  2016年   129篇
  2015年   205篇
  2014年   225篇
  2013年   243篇
  2012年   143篇
  2011年   140篇
  2010年   100篇
  2009年   145篇
  2008年   136篇
  2007年   114篇
  2006年   110篇
  2005年   101篇
  2004年   114篇
  2003年   102篇
  2002年   70篇
  2001年   55篇
  2000年   59篇
  1999年   51篇
  1998年   49篇
  1997年   28篇
  1996年   24篇
  1995年   20篇
  1994年   23篇
  1993年   16篇
  1992年   18篇
  1991年   8篇
  1990年   13篇
  1989年   12篇
  1988年   14篇
  1987年   5篇
  1986年   14篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1982年   10篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   6篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有3645条查询结果,搜索用时 203 毫秒
61.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   
62.
RNase alters the in vitro assembly of spindle asters in homogenates of meiotically dividing surf clam (Spisula solidissima) oocytes. Some effects of RNase, such as reduced astral fiber length, appear nonenzymatic and probably result from RNase binding to tubulin. However, RNase-induced changes in the microtubule organizing center are also observed. Since other polycations can mimic RNase effects, the existence of an RNA component of the spindle organizing center remains uncertain. Effects of RNase and other polycations on astral fiber length can be prevented and reversed by the RNase inhibitor, polyguanylic acid. Polyguanylic acid can also augment astral fiber length in the absence of added RNase or other polycations. Augmentation by polyguanylic acid is favored by high ionic strength, and can be duplicated by polyuridylic acid and, with less efficiency, by polyadenylic acid. Polucytidylic acid and unfractionated yeast RNA, however, are unable to augment aster assembly. Polyguanylic acid can also augment the length of astral fibers on complete spindles isolated under polymerizing condition. These results demonstrate that specfic polyribonucleotides can alter spindle assembly in vitro. The presence of an inhibitor of microtubule assembly in Spisula oocytes, which can be inactivated by specific RNAs, is suggested.  相似文献   
63.
Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.  相似文献   
64.
  1. Download : Download high-res image (339KB)
  2. Download : Download full-size image
  相似文献   
65.
Succession is a key ecological process that supports our understanding of community assembly and biotic interactions. Dispersal potential and dispersal strategies, such as wind- or animal-dispersal, have been assumed to be highly relevant for the success of plant species during succession. However, research yielded varying results on changes in dispersal modes between successional stages. Here, we test the hypotheses that (a) vascular plant species that use a number of dispersal modes dominate in early stages of succession while species specialized on one/few dispersal modes increase in abundance towards later stages of succession; (b) species well adapted to wind-dispersal (anemochory) will peak in abundance in early successional stages and (c) species well adapted to adhesive dispersal (epizoochory) will increase with proceeding succession. We test these hypotheses in four sites within agriculturally dominated landscapes in Germany. Agricultural use in these sites was abandoned 20–28 years ago, leaving them to secondary succession. Sites have been monitored for plant biodiversity ever since. We analyze changes in plant species richness and abundance, number of dispersal modes and two ranking indices for wind- and adhesive dispersal by applying generalized linear mixed-effect models. We used both abundance-weighted and unweighted dispersal traits in order to gain a comprehensive picture of successional developments. Hypothesis (a) was supported by unweighted but not abundance-weighted data. Anemochory showed no consistent changes across sites. In contrast, epizoochory (especially when not weighted by abundance) turned out to be an indicator of the transition from early to mid-successional stages. It increased for the first 9–16 years of succession but declined afterwards. Species richness showed an opposing pattern, while species abundance increased asymptotically. We suggest that plant-animal interactions play a key role in mediating these processes: By importing seeds of highly competitive plant species, animals are likely to promote the increasing abundance of a few dominant, highly epizoochorous species. These species outcompete weak competitors and species richness decreases. However, animals should as well promote the subsequent increase of species richness by disturbing the sites and creating small open patches. These patches are colonized by weaker competitors that are not necessarily dispersed by animals. The changes in the presence of epizoochorous species indicate the importance of plant traits and related plant–animal interactions in the succession of plant communities.  相似文献   
66.
67.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
68.
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1–97), the core (amino acids 98–245), and the C-terminus (amino acids 246–288). We found that deletion of CP or its segments amino acids 51–199, amino acids 200–283, or amino acids 265–274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6–50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.  相似文献   
69.
70.
Fibrillin‐1 is the major component of extracellular matrix microfibrils. Microfibrils dysfunction is responsible for the onset of various connective tissue diseases, including Marfan syndrome. Although ADAMTSL (a disintegrin and metalloproteinase with thrombospondin motifs‐like) 6β is one of the fibrillin‐1 binding proteins, the detailed mechanism underlying the involvement of ADAMTSL6β in microfibril formation remains unclear. In this study, we created deletion mutants of ADAMTSL6β and examined their interactions with fibrillin‐1 assembly. Pull‐down assay of the ADAMTSL6β deletion mutants and fibrillin‐1 protein revealed that ADAMTSL6β binds to fibrillin‐1 through the third thrombospondin type I domain. Furthermore, we observed that formation of fibrillin‐1 matrix assembly was enhanced in MG63 cells, expressing full‐length ADAMTSL6β, when compared with that of wild type MG63 cells. While MG63 cells expressing Δ TSP3‐ADAMTSL6β form showed enhanced assembly formation, Δ TSP2‐ADAMTSL6β form did not enhance that, indicating the difference between Δ TSP2‐Δ TSP3 has a critical role for fibrillin‐1 assembly. As the difference of Δ TSP2‐Δ TSP3 is the third thrombospondin type I domain, we concluded that the third thrombospondin type I domain of ADAMTSL6β influence the microfibril formation. Our data are the functional presentation of the biological role of ADAMTSL6β in the process of microfibril formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号