首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   8篇
  国内免费   10篇
  2022年   1篇
  2021年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   11篇
  2007年   2篇
  2006年   9篇
  2005年   14篇
  2004年   11篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   15篇
  1997年   9篇
  1996年   13篇
  1995年   13篇
  1994年   16篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   16篇
  1989年   8篇
  1988年   19篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1984年   11篇
  1983年   1篇
  1982年   6篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1975年   4篇
  1974年   7篇
  1973年   2篇
排序方式: 共有379条查询结果,搜索用时 31 毫秒
41.
Complexes of Photosynthetic Redox Proteins Studied by NMR   总被引:2,自引:2,他引:0  
In the photosynthetic redox chain, small electron transfer proteins shuttle electrons between the large membrane-associated redox complexes. Short-lived but specific protein:protein complexes are formed to enable fast electron transfer. Recent nuclear magnetic resonance (NMR) studies have elucidated the binding sites on plastocyanin, cytochrome c (6) and ferredoxin. Also the orientation of plastocyanin in complex with cytochrome f has been determined. Based on these results, general features that enable the formation of such transient complexes are discussed.  相似文献   
42.
The ubihydroquinone:cytochrome c oxidoreductase (also called complex III, or bc (1) complex), is a multi subunit enzyme encountered in a very broad variety of organisms including uni- and multi-cellular eukaryotes, plants (in their mitochondria) and bacteria. Most bacteria and mitochondria harbor various forms of the bc (1) complex, while plant and algal chloroplasts as well as cyanobacteria contain a homologous protein complex called plastohydroquinone:plastocyanin oxidoreductase or b (6) f complex. Together, these enzyme complexes constitute the superfamily of the bc complexes. Depending on the physiology of the organisms, they often play critical roles in respiratory and photosynthetic electron transfer events, and always contribute to the generation of the proton motive force subsequently used by the ATP synthase. Primarily, this review is focused on comparing the 'mitochondrial-type' bc (1) complex and the 'chloroplast-type' b (6) f complex both in terms of structure and function. Specifically, subunit composition, cofactor content and assembly, inhibitor sensitivity, proton pumping, concerted electron transfer and Fe-S subunit large-scale domain movement of these complexes are discussed. This is a timely undertaking in light of the structural information that is emerging for the b (6) f complex.  相似文献   
43.
The effect of Ce3+ on the chlorophyll (chl) of spinach was studied in pot culture experiments. The results showed that Ce3+ could obviously stimulate the growth of spinach and increase its chlorophyll contents and photosynthetic rate. It could also improve the PSII formation and enhance its electron transport rate of PSII as well. By inductively coupled plasma-mass spectroscopy and atom absorption spectroscopy methods, it was revealed that the rare-earth-element (REE) distribution pattern in the Ce3+-treated spinach was leaf>root>shoot in Ce3+ contents. The spinach leaves easily absorbed REEs. The Ce3+ contents of chloroplast and chlorophyll of the Ce3+-treated spinach were higher than that of any other rare earth and were much higher than that of the control; it was also suggested that Ce3+ could enter the chloroplast and bind easily to chlorophyll and might replace magnesium to form Ce-chlorophyll. By ultraviolet-visible, Fourier transform infrared, and extended X-ray absorption fine structure (EXAFS) methods, Ce3+-coordinated nitrogen of porphyrin rings with eight coordination numbers and average length of the Ce-N bond of 0.251 nm.  相似文献   
44.
We report the isolation and characterization of genes from the higher plants Arabidopsis, spinach and tobacco which code for nucleus-localized RNA-binding proteins. Common features of these polypeptides are glycine/arginine-rich regions with several RGG repeats at their N- and C-termini, which are sufficient for RNA binding in northwestern assays. All polypeptides analysed contain two basic bipartite nuclear localization signals and translational fusions harbouring these regions with the -glucuronidase gene direct the fusion proteins into the nucleus. Nuclear localization was confirmed by cellular fractionation with a polyclonal antiserum raised against the over-expressed tobacco protein NtRGG1p. Two or three copies of related RGG genes appear to be present in the analysed organisms and the expression of some of them is regulated: a tobacco gene is light-regulated and a spinach gene is preferentially expressed in roots. Possible biological functions of this class of RNA-binding proteins as well as structure/function relationships related to the modular structure are discussed.  相似文献   
45.
Plastocyanin and cytochrome c 6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes b 6 f and Photosystem I. Despite plastocyanin and cytochrome c 6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern (one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c 6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria, in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins have been shown to be critical for the electron transfer reaction. Cytochrome c 6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction with Photosystem I. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
46.
A review is presented of the early history of investigations into the function of the blue copper-protein plastocyanin in photosynthesis. The controversy or confusion that arose as to the function of plastoycanin in conjunction with cytochrome f and cytochrome c 6 is discussed and investigations contributing to the establishment of the role of plastocyanin as the mobile electron carrier between the Photosystem I reaction center complex and the cytochrome b 6/f complex are described. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
47.
Wild-type plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 does not form any kinetically detectable transient complex with Photosystem I (PS I) during electron transfer, but the D44R/D47R double mutant of copper protein does [De la Cerda et al. (1997) Biochemistry 36: 10125–10130]. To identify the PS I component that is involved in the complex formation with the D44R/D47R plastocyanin, the kinetic efficiency of several PS I mutants, including a PsaF–PsaJ-less PS I and deletion mutants in the lumenal H and J loops of PsaB, were analyzed by laser flash absorption spectroscopy. The experimental data herein suggest that some of the negative charges at the H loop of PsaB are involved in electrostatic repulsions with mutant plastocyanin. Mutations in the J loop demonstrate that this region of PsaB is also critical. The interaction site of PS I is thus not as defined as first expected but much broader, thereby revealing how complex the evolution of intermolecular electron transfer mechanisms in photosynthesis has been. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
48.
Digitalis lanata was transformed by agrobacteria-mediated gene transfer with a chimeric reporter gene encoding for β-glucuronidase (CUS) from Escherichia coll under the control of the plastocyanin 3 (Pc3) promoter from Spinada oleracea (Pc3::uidA fusion gene). Transformed cell lines were regenerated to plants via somatic embryos. CUS activity was determined fluorometrically and histochemically. The Pc3::uidA fusion gene was expressed in the late globular and bipolar stages of somatic embryos. Expression started in globular embryos (stage-1-globules) in that part of the parenchymatic tissue which later on formed the cotyledons. No GUS activity was detectable in the parenchymatic tissue forming the root pole, in cells of the developing procambium or in epidermal cells. These tissues were free of GUS activity also in bipolar embryos. The parenchymatic cells of the cotyledons and the primary cortex of the hypocotyl of germinating embryos showed GUS activity, in contrast to the epidermal cells and the cells of the central cylinder.  相似文献   
49.
Spinach chloroplast phenolase was inhibited by oxalic acid and its salts. Complete inhibitions were induced instantly in the acidic region (e.g. by 1 and 5 mM oxalate at pH 5 and 5.5, respectively), and in the neutral region pre-incubation of the enzyme with oxalates could also lead to complete loss of activity. The inhibition mode was non-competitive for phenol substrate with Ki of 0.9 mM pH 6.8. Reduction of enzyme activity in a crude extract of chloroplasts induced by freezing at neutral pH was due to the presence of ammonium oxalate. With 0.5 mM oxalate, the inhibition attained 75% under frozen conditions, whilst no inhibition could be detected in the enzyme which had not been frozen. Free oxalic acid and K+ and Na+ salts also caused freezing inhibition. Glyoxylic and oxamic acids acted as inhibitors with less efficiency. With a pure mushroom tyrosinase (phenolase), essentially the identical results were obtained using the same conditions.  相似文献   
50.
Aims: To determine survival and colonization of Escherichia coli O157:H7 on spinach leaves as affected by inoculum level and carrier, temperature and relative humidity (r.h.). Methods and Results: Spinach leaves were inoculated with suspensions of E. coli O157:H7 in distilled water (DW) and 0·1% peptone water (PW) and incubated at 4, 12 and 25°C and 43, 85 and 100% r.h. The number of E. coli O157:H7 on leaves (5·6 or 1·9 log CFU per leaf) inoculated using DW as a carrier medium increased significantly at 25°C and 100% r.h. within 120 h but remained constant or decreased significantly under other test conditions. E. coli O157:H7 on leaves (5·4 log CFU per leaf) inoculated using PW as a carrier increased significantly within 72 and 24 h, respectively, at 12 or 25°C and 100% r.h.; counts using a low inoculum (2·2 log CFU per leaf) increased significantly within 24 h at 25°C. Conclusions: Escherichia coli O157:H7 can colonize on spinach leaves at 12 or 25°C in a 100% r.h. environment. Organic matter in the inoculum carrier may provide protection and nutrients which enhance survival and colonization. Significance and Impact of the Study: Colonization of E. coli O157:H7 on spinach leaves as affected by organic matter in the inoculum, temperature and r.h. was determined. These observations will be useful when developing strategies to prevent growth of E. coli O157:H7 on pre‐ and postharvest spinach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号