首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   7篇
  国内免费   10篇
  280篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   12篇
  1997年   6篇
  1996年   10篇
  1995年   8篇
  1994年   12篇
  1993年   9篇
  1992年   9篇
  1991年   11篇
  1990年   14篇
  1989年   8篇
  1988年   17篇
  1987年   3篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   7篇
  1975年   2篇
  1974年   7篇
  1973年   1篇
排序方式: 共有280条查询结果,搜索用时 3 毫秒
1.
The detergent Tween-20 solubilized preferentially portions of the marginal regions of Spinacea oleracea L. thylakoid membranes and, thus, opened the inside of the grana to the external media. Differential centrifugation. following Tween-20 solubilization. enabled separate fractions of grana and stromal-exposed membranes to be isolated. Analysis of Tween-20 solubilized material, after pelleting all membrane material by centrifugation at 100 000 g, revealed polypeptides associated with the coupling factor (CF1) particles, cytochrome b6/f and photosystem II complexes, suggesting that the marginal membranes contain these proteins. Concomitantly, the 100 000 g pellet was depleted in cytochrome b6/f and P700, determined spectroscopically, Thus. our results reveal the margin to be a distinct membrane region, which does not contain the light-harvesting centers of photosystem II (LHC II). The implication of these results, in terms of the energetic interaction of components of granal and stromalexposed membrane regions, is discussed.  相似文献   
2.
Continuous shoot growth monitoring in hydroponics   总被引:1,自引:0,他引:1  
A weighing apparatus for automatic recording of fresh weight of shoots of spinach plants ( Spinacia oleracea L., cv. Subito) growing in nutrient solution is described. The system was tested for 17 days in a controlled environment and enabled the determination of the relative growth rate (RGR) of the shoot fresh weight. Results from three consecutive growth experiments demonstrated diurnal fluctuations in the relative growth rate of the shoot fresh weight. In general, relative growth rates were between 0.32 and 0.36 day−1 16 days after sowing and decreased to between 0.11 and 0.18 day−1 during the 12 following days. The variance between three replicate growth curves was compared with the variance of a growth function fitted through destructively obtained spinach shoot weight data.  相似文献   
3.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   
4.
When excited by ultraviolet radiation, leaves of a great number of species of higher plants exhibit emission of blue fluorescence, comparable in intensity to the red emission of chlorophyll. The fluorescence decay of the blue emission of spinach leaves recorded by single photon counting techniques is decomposed into exponential components and it is shown that at least three different components are present. The lifetime of the three components does not show significant variations with the excitation or emission wavelengths. The excitation and emission spectra of each component were determined. The nature of the chemical compounds which cause this emission is discussed in relation to these spectra.  相似文献   
5.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
6.
Incubation of thylakoid membranes from spinach with low concentrations of mercuric chloride induces the loss of one of the iron-sulfur centers, FB, in Photosystem I (PS I) and inhibits the electron transfer from PS I to the soluble electron carrier, ferredoxin. Reconstitution of this damaged iron-sulfur center has been carried out by incubating treated thylakoid membranes with exogenous FeCl3 and Na2S in the presence of-mercaptoethanol under anaerobic conditions. Low temperature EPR measurements indicate that center FB is largely restored. Kinetic experiments show that the restored FB can be photoreduced from P700. However, these reconstituted thylakoid membranes are still incompetent in the photoreduction of ferredoxin and NADP+, even though ferredoxin binding to the modified membranes was not impaired, indicating additional changes in the structure of the PS I complex must have occurred.  相似文献   
7.
Four types of differently phosphorylated hylakoids isolated from field grown spinach ( Spinacia oleracea L.) were tested for the sensitivity of photosystem II (PSII) to photoinactivation. Phosphorylation of light-harvesting II complexes (LHCII) protected PSII electron transfer from photoinhibitory damage, while the phosphorylation of the PSII core polypeptides slightly accelerated the decline of electron transfer during high irradiance treatment. Dephosphorylation of the CP43 apoprotein and PsbH protein by an alkaline phosphatase resulted in an extreme sensitivity of the thylakoids to strong illumination. The PSII photoinactivation of thylakoids with the impaired oxygen-evolving complex was found to be independent of phosphorylation.
The thylakoids of the thermophilic cyanobacterium Synechococcus elongates were used in order to compare the plants with an organism where LHCII complexes are missing and the PSII core proteins are not phosphorylated.  相似文献   
8.
A system for somatic embryogenesis and plant regeneration of spinach from hypocotyl segments has been established. Callus was induced on solid media supplemented with 8.5–15.0 mg.l−1 of indole-3-acetic acid and 3.46–34.64 mg.l−1 gibberellic acid. Callus was then subcultured on different media (solid or liquid) with or without IAA, or continuously maintained on the initiating media. Somatic embryos were obtained in subcultures on IAA-containing media as well as in long-term cultures on initiating media. The best results were achieved in liquid subcultures. About 60% of plantlets survived after transplanting in pots.  相似文献   
9.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   
10.
[14C]Cinnamate was taken up very rapidly by cultured spinach cells and completely incorporated into low-MW conjugates within 20 min. The 14C-labelled products were similar whether the [14C]cinnamate was supplied continuously over a period of hours via a peristaltic pump or instantaneously. Radioactivity was slowly recruited from the low-MW pool into aromatic components of the cell-wall fraction. Saponification of the radioactive wall fraction yielded, in addition to radioactive ferulate and p-coumarate, large amounts of ethyl acetate-soluble radioactive material with the properties of oxidatively coupled phenols. The coupled material was associated with the most highly ‘Driselase’-resistant fractions of the cell wall. In contrast, ‘Driselase’ released most of the wall's ferulate and p-coumarate on disaccharide fragments. It is suggested that the oxidatively coupled phenols are formed from simpler phenols by peroxidase and that they cross-link the polysaccharides to which they are attached, making these polysaccharides relatively ‘Driselase’-resistant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号